1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_lady [41]
4 years ago
13

Release an electron initially at rest in the presence of an electric field. The electron tends to go to the region of 1. same el

ectric potential. 2. indeterminate; sometimes higher, sometimes lower. 3. lower electric potential. 4. higher electric potential.
Physics
1 answer:
olga nikolaevna [1]4 years ago
4 0

Answer:

The electron tends to go to the region of 4. higher electric potential.

Explanation:

When a charged particle is immersed in an electric field, it experiences a force given by

F=qE

where

q is the charge of the particle

E is the electric field

The direction of the force depends on the sign of the charge. In particular:

- The force and the electric field have the same direction if the charge is positive

- The force and the electric field have opposite directions if the charge is negative

Therefore, an electron (negative charge) moves in the direction opposite to the electric field lines.

However, electric field lines go from points at higher potential to points at lower potential: so, electrons move from regions at lower potential to regions of higher potential.

Therefore, the correct answer is

The electron tends to go to the region of 4. higher electric potential.

You might be interested in
Based on discoveries to date, which of the following conclusions is justified?a) Most stars have one or more terrestrial planets
KIM [24]

Based on discoveries to date, the conclusion as “Planetary systems are common and planets similar in size to Earth are also common” is justified.

Answer: Option C

<u>Explanation: </u>

Some studies show that on average, each star has at least single planet. This means that most stars, such as the Solar System, possess planets (otherwise exoplanets). It is known that small planets (more or less Earthly or slightly larger) are more common than giant planets. The mediocrity principles state that planet like Earth should be universal in the universe, while the rare earth hypothesis says they are extremely rare.

Size is often considered an important factor, because planets the size of the Earth are probably more terrestrial and can hold the earth's atmosphere. The planetary system is a series of gravitational celestial objects orbiting a star or galaxy. Generally, planetary systems describe systems with one or more planets, although such systems may also consist of bodies such as dwarf planets, asteroids and the like.

6 0
3 years ago
A 20 kg crate initially at rest on a horizontal floor requires a 80 N horizontal force to set it in motion. Find the coefficient
e-lub [12.9K]

Answer:

<em>The coefficient of static friction between the crate and the floor is 0.41</em>

Explanation:

<u>Friction Force</u>

When an object is moving and encounters friction in the air or rough surfaces, it loses acceleration and velocity because the friction force opposes motion.

The friction force when an object is moving on a horizontal surface is calculated by:

Fr=\mu N          [1]

Where \mu is the coefficient of static or kinetics friction and N is the normal force.

If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:

N = W = m.g

The crate of m=20 Kg has a weight of:

W = 20*9.8

W = 196 N

The normal force is also N=196 N

We can find the coefficient of static friction by solving [1] for \mu:

\displaystyle \mu=\frac{Fr}{N}

The friction force is equal to the minimum force required to start moving the object on the floor, thus Fr=80 N and:

\displaystyle \mu=\frac{80}{196}

\mu=0.41

The coefficient of static friction between the crate and the floor is 0.41

7 0
3 years ago
A force is applied to a block sliding along a surface (Figure 2). The magnitude of the force is 15 N, and the horizontal compone
Lemur [1.5K]

Answer:

Fy = 14.3 [N]

Explanation:

To be able to solve this problem we must know that the force is a vector and has magnitude and direction, therefore it can be decomposed into the force in the X & y components:

When we have the components on the horizontal and vertical axes we must use the Pythagorean theorem.

F = \sqrt{F_{x}^{2} +F_{y}^{2}  }

where:

F = 15 [N]

Fx = horizontal component = 4.5 [N]

Fy = vertical component [N]

15=\sqrt{4.5^{2}+F_{y}^{2}}\\ 15^{2}= (\sqrt{4.5^{2}+F_{y}^{2}})^{2} \\225 = 4.5^{2}+F_{y} ^{2}\\  F_{y}^{2} =225 -4.5^{2}\\ F_{y}^{2}=204.75\\F_{y}=\sqrt{204.75}\\  F_{y}=14.3 [N]

7 0
3 years ago
WHY IS NO ONE HELPING I'M BOUTTA GET REPORTED FR!!!!!!!!!!!!!!
ExtremeBDS [4]
Yes it would get colder because people help people learn through experiences with no one to help teach the world would be a cold lifeless place.
7 0
3 years ago
The displacement of a 500 g mass, undergoing simple harmonic motion, is defined by the function :
Delicious77 [7]

The maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

<h3>What is simple harmonic motion?</h3>

Simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side.

Simple Harmonic Motion

The given equation of the simple harmonic motion is

x=3.5 sin (\frac{\pi }{2t} + \frac{5\pi }{4} )

Data;

ω = π/2

k = 1.254N/m

Solving this

\frac{dx}{dt} = -3.5 X \frac{\pi }{2} cos (\frac{x\pi t}{2}+\frac{5\pi }{4}  )

Let's calculate the maximum velocity.

V_{m} =\frac{3.5\pi }{2}

This is only possible when cos θ = -1

The maximum kinetic energy is

K_m =\frac{1}{2} mv^2 = \frac{1}{2} X \frac{500}{1000} X \frac{7^2\pi ^2}^{4} ^2

w^2 = \frac{k}{m} \\k = w^2m\\k = \frac{\pi ^2}{4} X \frac{500}{1000} \\k =1.254 N/m

Using the value of spring constant, we can find the maximum potential energy.

P.E =\frac{1}{2} k x^2\\P.E =\frac{1}{2} X 1.234 X 3.5^2 \\P.E = 7.56 J

The maximum potential energy is 7.56J

The maximum mechanical energy is equal to the sum of maximum potential energy and the maximum kinetic energy.

ME = K.E + P.E

ME = 7.56J

From the calculations above, the maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

Learn more on simple harmonic motion here;

brainly.com/question/15556430

#SPJ1

8 0
2 years ago
Other questions:
  • Earth's rotational axis completes one precession every _____.
    13·1 answer
  • Simon is riding a bike at 12 km/h away from his friend Keesha. He throws a ball at 5 km/h back to Keesha, who is standing still
    14·1 answer
  • Below is an "oracle" function. An oracle function is a function presented interactively. When you type in a t value, and press t
    14·1 answer
  • A heavy dart and a light dart are launched vertically by identical ideal springs. Both springs were initially compressed by the
    11·1 answer
  • The student in charge of the experiment wishes to present his/her findings in support of the theory that motor imagery and actio
    6·1 answer
  • Which element would have properties most similar to those of fluorine (F) ?
    11·2 answers
  • What are 3 criteria for acceleration?
    6·1 answer
  • You have a grindstone (a disk) that is 98.0 kg, has a 0.335-m radius, and is turning at 100 rpm, and you press a steel axe again
    5·1 answer
  • A car speeds up from 3 m/s to 10 m/s in 8 s. How far does the car travel while doing this? 2. A
    7·1 answer
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!