Answer:
Explanation:
Voltage and current in resistors
A graph of current against potential difference shows you how the current flowing through a component varies with the potential difference across it. The current flowing through a resistor at a constant temperature is directly proportional to the potential difference across it.
Answer:
a) 0.142mH
b) 14mV
Explanation:
the complete answer is:
(a) Calculate the self-inductance of a solenoid that is <ghtly wound with wire of diameter 0.10 cm, has a cross-sec<onal area of 0.90 cm2 , and is 40 cm long. (b) If the current through the solenoid decreases uniformly from 10 to 0 A in 0.10 s, what is the emf induced between the ends of the solenoid
a) the self inductance of a solenoid is given by:

μo: magnetic permeability of vacuum = 4\pi*10^{-7}N/A^2
A: cross sectional area = 0.9cm^2=9*10^{-5}m
L: length of the solenoid = 40cm = 0.4m
The N turns of the wire is calculated by using the diameter of the wire:
N = (40cm)/(0.10cm)=400
By replacing in the formula you obtain:

the self inductance is 1.42*10^{-4}H = 0.142mH
b) to find the emf you can use:

the emf induced is 14mV
Answer:
The vapour pressure of water is great tah 50 than it is 10.
Answer:
Solar flare
Explanation:
In the Sun when there is an sudden increase in brightness which is generally accompanied by a coronal mass ejection it is known as a solar flare. Solar flares occur close to Sun spot.
Coronal mass ejection is the release of matter (plasma) with a strong magnetic field from the corona of the Sun.
The energy they release ranges between
which is comparable to 100-megaton hydrogen bombs exploding simultaneously
Answer:
y = 20.38 [m]
Explanation:
In order to solve these problems, we must use the following kinematics equation.

where:
Vf = final velocity = 0
Vi = initial velocity = 72 [km/h]
g = gravity acceleration = 9.81 [m/s^2]
y = vertical elevation [m]
We need to convert [km/h] to [m/s]
![72[\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km} ] = 20 [m/s]](https://tex.z-dn.net/?f=72%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%20%5D%20%3D%2020%20%5Bm%2Fs%5D)
Note: the negative sign of the equation means that the acceleration acts in the opposite direction to the movement of the body. And the final speed is zero, because when the body reaches the maximum height, the Stone does not move its speed has been reduced to its entirety.
0 = (20)^2 - (2*9.81*y)
20^2 = 2*9.81*y
y = 20.38 [m]