1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
9

Please help due today

Mathematics
2 answers:
n200080 [17]3 years ago
6 0

Answer:

3 & 1

6 & 2

9 & 3

12 & 4

Step-by-step explanation:

Hope that helps!

Margaret [11]3 years ago
6 0
Dollars- 9
Pounds- 2, 4
You might be interested in
The annual interest rate on a $10,000 loan is 18%. The exponential function that represents this is y = 10000(1.18t). Write the
Yuki888 [10]

Answer:

y=10000(1.015)^{12t}

option-B......Answer

Step-by-step explanation:

We are given

amount taken for loan =$10000

so, P=10000

annual interest rate =18%

r=0.18

now, we can use formula

y=P(1+\frac{r}{n} )^{nt}

Since, it is compounded monthly

so, n=12

we can plug values

y=10000(1+\frac{0.18}{12} )^{12t}

y=10000(1.015)^{12t}

6 0
3 years ago
Read 2 more answers
Which statements about quadrilaterals are true?
USPshnik [31]
D)A rectangle is always also a parallelogram.
5 0
2 years ago
Read 2 more answers
Compute the rate of discount allowed on a lawnmower that lists for $168 and is sold for $105. The rate of discount allowed is 43
kvasek [131]

Answer:

The rate of discount of a lawnmower is 37,5%

Step-by-step explanation:

Sale price formula is

S = p - rp

where S = sale price,

r = discount percentage rate

p = the original price.

Isolating r

r= (p-S)/p

r=  ($168- $105)/$168

r=0.375

r= 37,5%

8 0
2 years ago
Question in pictures
yan [13]

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

7 0
1 year ago
How to find three consecutive integers whose sum is 336?
Allisa [31]
There's a quick, easy, sloppy way, and there's a good math way.
Here's the good math way:

If the integers are consecutive, then you can call them  'x',  (x+1), and  (x+2).

We know what their sum is, so let's add them up:

x + (x+1) + (x+2)  =  336

x +  x+1  +  x+2    =  336

Combine the terms that are alike on the left side:

                                           3x + 3  =  336

Subtract 3 from each side:    3x = 333

Divide each side by 3 :            <u>  x = 111</u>

The integers are<em>  111,  112,  </em>and<em> 113</em> .

7 0
3 years ago
Other questions:
  • How is "y more than 4 is -36" written and what is the answer ​
    11·1 answer
  • What percent is $10,000 out of a 120.000
    10·2 answers
  • How many squares would have to be shaded so that 1/6 of the shape is shaded?
    7·1 answer
  • - Monica goes for a 60 minute bike ride each day in the summer. Let a rep
    11·1 answer
  • Find the area of a circle that has a radius of 14 feet. Approximate 1 as 3.14. Round your answer to the nearest
    5·1 answer
  • A consultant built an Einstein Analytics dashboard for a shipping company. The dashboard displays data from several data sources
    10·1 answer
  • Vicky is renting an apartment.In addition to the first month’s rent, the landlord requires him to pay half of a month's rent as
    15·2 answers
  • Which of the following is equivalent to the complex number
    13·1 answer
  • What is the solution to the equation 7(a – 10) = 13 – 2(2a + 3)?
    12·2 answers
  • Arrange these fractions in least to greatest order:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!