Answer:
surface temperature of the chip located 120 mm Ts=42.5°C
surface temperature of the chip in Mexico Ts=46.9°C
Explanation:
from the energy balance equation we have to:
q=E=30W
from Newton´s law:
Ts=Tα+(q/(h*A)), where A=l^2
N=h/k=0.04*(Vl/V)^0.85*Pr^1/3
data given:
l=0.12 m
v=10 m/s
k=0.0269 W/(m*K)
Pr=0.703
Replacing:
h=0.04*(0.0269/0.12)*(10*0.12)/((16*69x10^-6))^0.85*(0.703^1/3) = 107 W/m^2*K
The surface temperature at sea level is equal to:
Ts=25+(30x10^-3/107*0.004^2)=42.5°C
h=0.04*(0.0269/0.12)*((10*0.12)/(21*81x10^-6))^0.85*(0.705^1/3)=85.32 W/(m*K)
the surface temperature at Mexico City is equal to:
Ts=25+(30x10^-3/85.32*0.004^2)=46.9°C
This is not as simple as it looks.
His average speed is NOT (10km/hr + 50km/hr)/2 = 30 km/hr.
You have to use the definition of speed:
Speed = (total distance covered) / (time to cover the distance).
Let's say the distance up (and down) the hill is 'd' .
Then the time it takes to go up the hill is (d/10) hours.
And the time it takes to come down the hill is (d/50) hours.
Total distance = 2d km
Total time = (d/10) + (d/50) = (5d/50) + (d/50) = 6d/50
Speed = distance/time = 2d/(6d/50) = 100d/6d
<em>Speed = </em>100/6 = <em>16-2/3 km/hr</em>
Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


Let height of twin falls = x
height of seven falls = 2.5x
x + 2.5x = 420
3.5x = 420
x = 420/3.5 = 120
so twin falls = x = 120 ft
seven falls = 2.5x = 300 ft