Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave

The frequency is calculated as follows;

Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
Microwaves are transmitted by Radio Waves.
When air resistance is ignored, initial velocity of the projectile affect the range and maximum height of the projectile.
Projectile is a missile designed to be fired from a rocket or gun.
A projectile is the object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance.
The range is defined as the distance between the launch point and the point where the projectile hits the ground.
The height from the ground at the top most position of projectile is referred to as maximum height.
When air resistance is ignored, initial velocity of the projectile affect the range and maximum height of the projectile.
Learn more about maximum height click here brainly.com/question/6261898
#SPJ4
In the part of the spectrum our eyes can detect (a spectrum is an arry of entities, as light waves or particles, ordered in accordance with the magnitudes of a common physical property, as wavelength or mass) Hope this helps you :D
Uranus was originally discovered by Sir William Herschel in 1781. Neptune is the 8th planet from the sun making it the most distant in the solar system. Neptune is the smallest of the Ice Giants. The atmosphere of Neptune is made of Hydrogen, helium, And some methane. Uranus make one trip around the sun every 84 earth years. Uranus has the coldest temperatures of any planet. I hope This helps!!!