Here's one way to do it.
AB ≅ AC . . . . . . . . . . given
∠BAY ≅ ∠CAY . . . . given
AY ≅ AY . . . . . . . . . . reflexive property
ΔBAY ≅ ΔCAY . . . .. SAS congruence
XY ≅ XY . . . . . . . . . . reflexive property
∠AYB ≅ ∠AYC . . . . CPCTC
BY ≅ CY . . . . . . . . . . CPCTC
ΔXYB ≅ ΔXYC . . . .. SAS congruence
Therefore ...
∠XCY ≅ ∠XBY . . . . CPCTC
Area de la base es un hexagono: Nota: asumiendo que 39 cm son el lado de un hexagono. Menuda pizza.
A = 3*sqrt(3)/2*a^2 = 3*sqrt(3)/2*39^2 = 3951.67391746839972 cm^2
Hay dos base y tapa, doble:
7903.34783493679944 cm^2
Luego los lados verticales:
6 * 39 * 4.7 = 1099.8 cm^2
TOtal = 9003.14783 = 9003.147 cm^2 = 9003.15 cm^2
As we know that angle of semi circle is 180°.
Here,
FLG = 40°
GLH = ?
HLJ = 60°
FLG + GLH + HLG = 180°
40° + GLH + 60° = 180°
GLH + 100° = 180°
GLH = 180° - 100°
GLH = 80°
Now,
FLH = 40° + 80° = 120°




