Hey there,
<em />Answer:
The sun appears to move across the sky but it is actually the earth which is orbiting around the sun.
Hope this helps :D
<em>~Top</em>
Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
Answer:
The same pendulum could be adjusted to have the same period, in the equator must have a length of 3.949m.
Explanation:
Tnp= 4 sec
gnp= 9.83 m/sec²
Lnp= 3.97m
Tequ= 4 sec
gequ= 9.78 m/sec²
Lequ=?
Lequ= (Lnp* gequ) / gnp
Lequ= 3.949 m
Answer:
(B) tightly packed protons and neutrons
Explanation:
- Nucleus of any atom is the dense central part of any atom.
- It consists of two sub-atomic particle namely proton and neutron.
- These sub-atomic parts are tightly packed in nucleus which makes the nucleus dense .
- This dense nucleus is responsible for most of the mass of atom.
- The atomic mass for any atom is decided by sum of the mass of proton and neutron
Thus, correct answer is
(B) tightly packed protons and neutrons
Given:
m₁ = 1540 g, mass of iron horseshoe
T₁ = 1445 °C, initial temperature of horseshoe
c₁ = 0.4494 J/(g-°C), specific heat
m₂ = 4280 g, mass of water
T₂ = 23.1 C, initial temperature of water
c₂ = 4.18 J/(g-°C), specific heat of water
L = 947,000 J heat absorbed by the water.
Let the final temperature be T °C.
For energy balance,
m₁c₁(T₁ - T) = m₂c₂(T - T₂) + L
(1540 g)*(0.4494 J/(g-C))*(1445-T C) = (4280 g)*(4.18 J/(g-C))*(T-23.1 C) + 947000 J
692.076(1445 - T) = 17890(T - 23.1) + 947000
10⁶ - 692.076T = 17890T - 413259 + 947000
466259 = 18582.076T
T = 25.09 °C
Answer: 25.1 °C