Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
Answer:
Objective: It is raining. Subjective: I love the rain!
Explanation:
Anything objective sticks to the facts, but anything subjective has feelings. Objective and subjective are opposites.
(Hope this helps can I pls have brainlist (crown)☺️)
Answer:
Angular frequency will increase
No change in the amplitude
Explanation:
At extreme end of the SHM the energy of the SHM is given by

here we know that

now at the extreme end when one of the mass is removed from it
then in that case the angular frequency will change

So angular frequency will increase
but the position of extreme end will not change as it is given here that the top block is removed without disturbing the lower block
so here no change in the amplitude
Answer:
Explanation:
Single-phase transformers can operate to either increasing or decreasing the voltage applied to the primary winding. When a transformer is used to “increase” the voltage on the secondary winding with respect to the primary, it is called a Step-up transformer