To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. By definition is defined as:

Where,
= Wavelength
d = Width of the slit
= Angular resolution
Through the arc length we can find the radius, which would be given according to the length and angle previously described.
The radius of the beam on the moon is

Relacing 


Replacing with our values we have that,


Therefore the diameter of the beam on the moon is



Hence, the diameter of the beam when it reaches the moon is 7361.82m
Answer:
E = hv
Explanation:
- The photoelectric effect is a phenomenon when the electromagnetic waves of a particular wavelength strike on the metal plate like zinc, it ejects the free electrons.
- The ejected electrons have the kinetic energy and this energy is responsible for the electric energy.
- The kinetic energy of the emitted electrons is linked with the frequency of the incident rays.
- If the rays hitting the metal plate is below the minimum required threshold value, the photoelectrons are not ejected.
- The photoelectric equation is given by
E = hν - ∅
Where, ∅ is the minimum energy required to remove an electron.
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
-- Take a straight ruler.
-- Lay it down with the 'zero' mark at the start point.
-- Rotate it around the start point until the end point is also touching the edge of the ruler.
-- From the marks on the ruler, read the straight-line distance from the start point to the end point.
-- Without moving the ruler, observe and write down the DIRECTION from the start point to the end point.
-- The Displacement is the straight-line distance and direction from the start point to the end point.
Answer:
Newton's First Law of Motion applies here.
Explanation:
Before crashing into the fence, Amy was moving at a certain speed on her bike. As, she crashed her bike into the fence, the collision stopped the bike suddenly. But, Amy had the same speed due to inertia of her body. Due tot his speed Amy did not stop and she was thrown over the fence onto the lawn. So, the force of inertia of Amy's body caused her to be overthrown in this case. We study about inertia in Newton's First Law of Motion, which is also known as Law of Inertia.
<u>Newton's First Law of Motion applies here.</u>