Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
<span>A cumulus cloud is puffy and white.
</span><span>Vinegar has a very sour smell.
</span><span>Water boils at 100 degrees Celsius. </span>
Answer:
(a) 3.44 x 10^-3 m^3/s
(b) 8.4 m/s
Explanation:
area of water line, A = 5.29 x 10^-3 m
number of holes, N = 15
Speed of water in line, V = 0.651 m/s
(a) Volume flow rate is given by
V = area of water line x speed of water in water line
V = 5.29 x 10^-3 x 0.651 = 3.44 x 10^-3 m^3/s
(b) area of one hole, a = 4.13 x 10^-4 m
Let v be the velocity of water in each hole
According to the equation of continuity
A x V = a x v
5.29 x 10^-3 x 0.651 = 4.1 x 10^-4 x v
v = 8.4 m/s
Answer:
Art
Explanation:
Polly's line is linear, while arts line is going up with constant velocity. There for art is going faster.
Correct answer is A
Voltaic Piles