Answer:
<u>y'= 5x^4 + 5^x In(5)</u>
Step-by-step explanation:
<u>Differentiate</u><u> </u><u>with </u><u>Respect</u><u> </u><u>to</u><u> </u><u>x</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>In(</u><u>5</u><u>^</u><u>x</u><u>)</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>x </u><u>In(</u><u>5</u><u>)</u>
<u>with </u><u>respect</u><u> </u><u>to </u><u>x,</u><u> </u><u>we </u><u>have</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>y </u><u>In(</u><u>5</u><u>)</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>5</u><u>^</u><u>x</u><u> </u><u>In(</u><u>5</u><u>)</u>
Answer:
Numbers are 28 and -15
Step-by-step explanation:
Mark first number X, and second number Y, then:
x-y=43
and
x+y=13
We get system of two equations. Solve it by add both them together:
x-y+x+y=43+13
2x=56
x=28 we get first number
x+y=13
28+y=13
y=13-28
y=-15
Answer:
The question is incomplete, the complete question is "Changing Bases to Evaluate Logarithms in Exercise, use the change-of-base formula and a calculator to evaluate the logarithm. See Example 9.
.

Step-by-step explanation:
From the general properties or laws of logarithm, we have the

where both log are now express in the natural logarithm base.
i.e 
hence we can express our
.
the value of ln7 is 1.9459 and ln4 is 1.3863
Hence
.

Answer:
2x+8-2y
Step-by-step explanation:
4x-2x+5+3-2y
2x+8-2y
Answer:
Step-by-step explanation:
common difference d=3-1=2
first term a=1
an=a+(n-1)d
2n-1=1+(l-1)2
2n-1=1+2l-2
2n-1=2l-1
l=n
(i used l for number of terms)
number of terms=n
