Answer:
gene
Explanation:
The basic unit of heredity that occupies a specific location on a chromosome is a gene.
Answer:
Which statement best explains why cells were observed in more detail using a compound microscope than a simple microscope?
A compound microscope has greater magnification ability than a simple microscope.
Explanation:
Hope this <em><u>Helped!</u></em> :D
Answer:
using multiple origins of replication on each chromosome
Explanation:
Answer: Option A
Explanation:
In Prokaryotes the the rate of new mutations is much more as compared to the eukaryotes. The rate of accumulation of mutation is slow in case of eukaryote because their generation is long as compared to prokaryotes.
Prokaryotes have short generation time and large population size which enables them to accumulate the mutation quickly.
The machinery is also not that complex when it comes to prokaryotes. Transduction, conjugation and tranposable elements. So, the changes during these processes leads to mutation in the prokaryotes and can be observed quickly due to their small generation.
Answer:
Answer is C.
Explanation:
For A and B, a base substitution affects one of the three bases that comprise a codon, the DNA/RNA unit that corresponds to a particular amino acid. If one base is substituted, one codon and therefore one amino acid will be affected. Codons have built-in redundancy, so even by changing one base, the new codon sometimes still corresponds to the same amino acid. Therefore, a base substitution at most affects one amino acid, and sometimes doesn't affect it all.
Frameshift mutations cause a lot more trouble. These occur when you have a deletion or insertion that changes the number of bases in your gene. As a result, the "frame" of the codons changes (everything shifts one way or the other by the number of bases added/removed). This affects EVERY codon downstream of the mutation, so you can imagine that such a mutation would have a bigger effect the closer to the start of the gene it occurs. This is why C is correct.