Answer:
D. It must have mass and volume
Explanation:
In science, matter is referred to as any substance that has weight and occupies space. This means that the substance must have a MASS of its own when weighed and also a VOLUME.
Matter include elements, molecules, humans, etc. In fact, almost every substance on Earth is considered MATTER. Therefore, the fact that a substance must "have mass and volume" is true for all matter.
Refractive index is the ration of sin i to sin r where i is the incident angle and r is the refraction angle.
Therefore, refractive index = sin 79.5 / sin 39.6
= 1.542
The refractive index may be given by the ratio of refractive index of medium 2 to refractive index of medium 1.
Therefore, 1.542 = n/1.0003
n = 1.5425
≈ 1.54
Medium 2 is sodium chloride, refractive index of 1.54
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second:
Answer:
lateral splaying of echoes in the far field can be improved by Increasing the maximum number of transmit focal zones and optimize their location.