<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building
Answer:
There are four basic states of matter
Answer:
T=4.24 N.m
Explanation:
Torque is equal to force for distance for sinus of the angle between the direction of the force and the distance, the distance between the mass and the pivot is 1 m, and to obtain the force that is the mass for the gravity in this case, we need to know the component that produces a torque in the pivot
F=0.5 kg* 9.8 m/
= 4.9 N
and we decompose the force in parallel direction to the rod and perpendicular direction to the rod, the magnitude that produces torque is the perpendicular component, because the torque is in function of the sinus
so, we obtain -> Fy= 4.9 N*sin(60)= 4.24 N
and, T= (4.24 N)*(1 m)*(Sin(90))= 4.24 N.m
anothe way to do it is,
T= (4.9 N)*(1 m)*(Sin(60))= 4.24 N.m, and we obtain the same result
The centripetal acceleration is 
Explanation:
For an object in uniform circular motion, the centripetal acceleration is given by

where
v is the speed of the object
r is the radius of the circle
The speed of the object is equal to the ratio between the length of the circumference (
) and the period of revolution (T), so it can be rewritten as

Therefore we can rewrite the acceleration as

For the particle in this problem,
r = 2.06 cm = 0.0206 m
While it makes 4 revolutions each second, so the period is

Substituting into the equation, we find the acceleration:

Learn more about centripetal acceleration:
brainly.com/question/2562955
#LearnwithBrainly
Answer:
(a) work required to lift the object is 1029 J
(b) the gravitational potential energy gained by this object is 1029 J
Explanation:
Given;
mass of the object, m = 35 kg
height through which the object was lifted, h = 3 m
(a) work required to lift the object
W = F x d
W = (mg) x h
W = 35 x 9.8 x 3
W = 1029 J
(b) the gravitational potential energy gained by this object is calculated as;
ΔP.E = Pf - Pi
where;
Pi is the initial gravitational potential energy, at initial height (hi = 0)
ΔP.E = (35 x 9.8 x 3) - (35 x 9.8 x 0)
ΔP.E = 1029 J