Answer:
Disagree with the suggestion based on the hygroscopic nature of anhydrous magnesium sulfate
Explanation:
Magnesium sulfate in the anhydrous form is a drying agent. A drying agent salts of inorganic compounds that has the capability of absorbing water to become hydrated, when placed in the presence of a wet surface or moist air
Anhydrous magnesium sulfate is therefore hygroscopic such that it absorbs water from the atmosphere and becomes hydrated and increases in size as its volume is increased according to the following chemical equation
MgSO₄(s) + 7H₂O(l) → MgSO₄·7H₂O(s)
The molar mass of anhydrous magnesium sulfate = 120.366 g/mol
The molar mass of the heptahydrate = 246.47 g/mol
Therefore, the mass of the magnesium sulfate doubles when it forms the heptahydrate, and the magnesium sulfate grows bigger.
The answer is B. Commensalism.
<span>Commensalism is a relationship between two organisms in which only one of them has benefit, and the other one is not affected. In this example, the Great Burdock's plants spread their seeds using animals, so they benefit from this relationship. On the other hand, animals neither have benefits not are harmed from the relationship.</span>
Answer: a) The concentration after 8.8min is 0.17 M
b) Time taken for the concentration of cyclopropane to decrease from 0.25M to 0.15M is 687 seconds.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) concentration after 8.8 min:



b) for concentration to decrease from 0.25M to 0.15M


Answer:
See explanation
Explanation:
Electrons transition between energy levels in an atom due to gain or loss of energy. An electron may gain energy and move from its ground state to one of the accessible excited states. The electron quickly returns to ground state, emitting the energy previously absorbed as a photon of light. The wavelength of light emitted is measured using powerful spectrometers.
Atoms can be excited thermally or by irradiation with light of appropriate frequency.