Answer:
The answer to your question is P2 = 9075000 atm
Explanation:
Data
Pressure 1 = P1 = 5 atm
Volume 1 = V1 = 363 ml
Pressure 2 = P2 = ?
Volume 2 = 0.0002 ml
Process
To solve this problem use Boyle's law
P1V1 = P2V2
-Solve for P2
P2 = P1V1/V2
-Substitution
P2 = (5 x 363) / 0.0002
-Simplification
P2 = 1815 / 0.0002
-Result
P2 = 9075000 atm
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>
The answers will help you!!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~
The statement describes from the relationship between multiple approaches and familiarity with similar work. The answers is would be last sentences. D. Multiple approaches may occur because scientists develop similar interests independently.
Molar Volume is required to solve this problem. As we know that "1 mole of any gas at standard temperature and pressure occupies 22.4 L of volume". SO using this concept, we can calculate the volume of ammonia formed by reacting 54.1 L of Hydrogen gas as follow,