1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
8

Adam runs 13 miles in 143 minutes. How many minutes does it take him to run one mile? Adam runs at a rate of minutes per mile.

Mathematics
2 answers:
Svetach [21]3 years ago
5 0

Answer:

it would take him 11 minuets to run a mile

Step-by-step

143 divided by 13 is 11 which means each mile takes 11

you can also check the answer by multiplying 13 times 11 which is 143

Aleksandr-060686 [28]3 years ago
3 0

Answer:

Adam runs at a rate of 11 minutes per mile.

Step-by-step explanation:

Take 143 minutes and divide by 13 miles and you will get the answer of 11 minutes.

PLEASE MARK ME BRAINEIST.

You might be interested in
- 5x+6=-12x+62<br> Simplify your answer as much as possible.
S_A_V [24]

Answer:

x=8

Step-by-step explanation:

-5x+6=-12x+62

-5x+12x=62-6

7x=56

x=8

7 0
3 years ago
Read 2 more answers
Do anyone know the answer
Vlada [557]

Answer:

A

Step-by-step explanation:

Domain the "input" to the function, range is the "output" of the function.

6 0
2 years ago
Read 2 more answers
What is another name for the height of the pyramid?
Lynna [10]
The altitude might be another name for a height of a pyramid, lol, hope this helps
5 0
3 years ago
The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys
ad-work [718]

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

4 0
2 years ago
What is 6/7 +8/36+9/45 equal?
valkas [14]

Answer: 1.27936507937

5 0
2 years ago
Other questions:
  • If 5x= -2=-12 than x=
    9·2 answers
  • A model of a car uses a scale of 2 1/4 inches = 3 feet. If the model is 14 inches long, what is the actual length of the car?
    10·1 answer
  • a)narysuj lustrzane odbicie równoległoboku względem czterech zaznaczonych linii ustawienia lusterka. b) a teraz odbij symetryczn
    8·1 answer
  • PLS HELP ASAP!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!
    15·1 answer
  • Find the surface area of the prism.<br> 2 cm<br> 6 cm<br> 6 cm<br> 2 cm<br> 3 cm<br> 3 cm<br> 3 cm
    14·1 answer
  • The quotient of a number and -3 is at least seven
    7·1 answer
  • Ur answer will be marked as brainliest
    8·1 answer
  • Lin says that an octagon has six sides. Chris says that it has eight sides. Whose statement is correct?
    6·1 answer
  • What is the slope of this graph?
    14·1 answer
  • If 2(x+3)=x+10 then x equals
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!