Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
To convert m/sec into km/hr, multiply the number by 18 and then divide it by 5.
Explanation:
please mark as brainliest
Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Answer:
u= 187.61 ft/s
Explanation:
Given that
g= - 32 ft/s²
The maximum height ,h= 550 ft
Lets take the initial velocity = u ft/s
We know that
v²=u² + 2 g s
v=final speed ,u=initial speed ,s=height
When the object reach at the maximum height then the final speed of the object will become zero.
That is why
u²= 2 x 32 x 550
u²= 35200
u= 187.61 ft/s
That is why the initial speed will be 187.61 ft/s
The best answer would be the second option B) because that is NOT part of the Kinetic Molecular Theory.