Answer:
The speed of the water shoot out of the hole is 20 m/s.
(d) is correct option.
Explanation:
Given that,
Height = 20 m
We need to calculate the velocity
Using formula Bernoulli equation

Where,
v₁= initial velocity
v₂=final velocity
h₁=total height
h₂=height of the hole from the base
Put the value into the formula




Hence, The speed of the water shoot out of the hole is 20 m/s.
To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.
PART A)

Here,
M = Mass of Earth
R = Distance from center to the satellite
Replacing with our values we have,



PART B) The period of satellite is given as,




PART C) The gravitational force on the satellite is given by,




The bar magnet and the electromagnet act identical. The difference being a electromagnet is a coil of wire that has a power source connect to both ends, this energizes the coil with an electromagnetic field.
Let the distance between the towns be d and the speed of the air be s.
distance = speed * time
convert the minutes time into hours.
When flying into the wind, ground speed will be air speed MINUS wind speed, hence the against the wind trip is described by:
d
s−15
=
7
3
return trip is then :
d
s+15
=
7
5
Cross-multiplying both we get the two-variable system:
3d=7∗(s−15)5d=7∗(s+15)
3d=7s−1055d=7s+105
subtract first equation from second equation we get
2d=210d=105km
Substitute the value of d in the above equations for s.
5∗105=7s+1057s=420s=60km/hr
Answer:
Explanation:
Some correct non-examples are: A glass half-empty; Anything in two dimensions; The amount that covers something.