Answer:
a) solar activity -- sudden eruptions of large bubbles of plasma and magnetic energy
and
d) solar flare -- sudden release of magnetic energy
Explanation:
We can start by eliminating the options that are definitely wrong.
A coronal mass ejection is not a relatively cool spot on surface of the sun, in fact such a spot is a sunspot, while a coronal mass ejection occurs when the magnetic field of the sun emerges as a loop. Thus, both options B and E are incorrect, leaving only A, C, and D. Option C makes no sense, as the sun's gravitational field does not 'churn'. Thus, only options A and D are left. A closer look at A and D reveals they are correct; solar flares are in fact sudden releases of magnetic energy, as seen in this quote from UC Berkeley's website; "Solar flares are caused by sudden changes of strong magnetic fields in the Sun's corona.". And solar activity is a blanket term for the effects of eruptions of plasma and magnetic energy from the sun.
<span>The direction of the electric field's vibration</span>
Answer:
a The kinetic energy is 
b The height of the center of mass above that position is
Explanation:
From the question we are told that
The length of the rod is 
The mass of the rod
The angular speed at the lowest point is 
Generally moment of inertia of the rod about an axis that passes through its one end is
Substituting values


Generally the kinetic energy rod is mathematically represented as



From the law of conservation of energy
The kinetic energy of the rod during motion = The potential energy of the rod at the highest point
Therefore



Answer:

Explanation:

1+7 = 6+2 =8 -protons
1+15 = 12+4 = 16 - protons +neutrons
Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.