1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
11

A thin rod of length 1.4 m and mass 140 g is suspended freely from one end. It is pulled to one side and then allowed to swing l

ike a pendulum, passing through its lowest position with angular speed 1.09 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
Physics
2 answers:
m_a_m_a [10]3 years ago
5 0

Answer:

a The kinetic energy is  KE = 0.0543 J

b The height of the center of mass above that position is  h = 1.372 \ m    

Explanation:

From the question we are told that

  The length of the rod is  L = 1.4m

   The mass of the rod m = 140 = \frac{140}{1000} = 0.140 \ kg  

   The angular speed at the lowest point is w = 1.09 \ rad/s

Generally moment of inertia of the rod about an axis that passes through its one end is

                   I = \frac{mL^2}{3}  

Substituting values

               I = \frac{(0.140) (1.4)^2}{3}

               I = 0.0915 \ kg \cdot m^2

Generally the  kinetic energy rod is mathematically represented as

             KE = \frac{1}{2} Iw^2

                    KE = \frac{1}{2} (0.0915) (1.09)^2

                           KE = 0.0543 J

From the law of conservation of energy

The kinetic energy of the rod during motion =  The potential energy of the rod at the highest point

   Therefore

                   KE = PE = mgh

                        0.0543 = mgh

                             h = \frac{0.0543}{9.8 * 0.140}

                                h = 1.372 \ m    

                 

Lynna [10]3 years ago
3 0

Answer:

a) Kr = 0.0543 J

b) Δy = 0.0396 m

Explanation:

a) Given

L = 1.4 m

m = 140 g = 0.14 kg

ω = 1.09 rad/s

Kr = ?

We have to get the rotational inertia as follows

I = Icm + m*d²

⇒ I = (m*L²/12) + (m*(L/2)²)

⇒ I = (0.14 kg*(1.4 m)²/12) + (0.14 kg*(1.4 m/2)²)

⇒ I = 0.09146 kg*m²

Then, we apply the formula

Kr = 0.5*I*ω²

⇒ Kr = 0.5*(0.09146 kg*m²)*(1.09 rad/s)²

⇒ Kr = 0.0543 J

b) We apply the following principle

Ei = Ef

Where the initial point is the lowest position and the final point is at the maximum height that its center of mass can achieve, then we have

Ki + Ui = Kf + Uf

we know that ωf = 0 ⇒ Kf = 0

⇒ Ki + Ui = Uf

⇒ Uf - Ui = Ki

⇒ m*g*yf - m*g*yi = Ki

⇒ m*g*(yf - yi) = Ki

⇒ m*g*Δy = Ki

⇒ Δy = Ki/(m*g)

where

Ki = Kr = 0.0543 J

g = 9.81 m/s²

⇒ Δy = (0.0543 J)/(0.14 kg*9.81 m/s²)

⇒ Δy = 0.0396 m

You might be interested in
What is the answer to this question number 2?
anzhelika [568]

Answer:

1⁺ ion

Explanation:

Metals in the first group on the periodic table will prefer to form 1⁺ ion. This is because the 1 valence electron in their orbital.

Most metals are electropositive and would prefer to lose electrons than to gain it.

Like all metals, the group 1 elements called the alkali metals would prefer to lose and electron.

On losing an electron the number of protons is then greater than the number of electrons. This leaves a net positive charge.

3 0
3 years ago
What are all stars made of
ivolga24 [154]
Stars are huge celestial bodies made mostly of hydrogen and helium that produce light and heat from the churning nuclear forges inside their cores. Aside from our sun, the dots of light we see in the sky are all light-years from Earth. They are the building blocks of galaxies, of which there are billions in the universe. It’s impossible to know how many stars exist, but astronomers estimate that in our Milky Way galaxy alone, there are about 300 billion.
7 0
3 years ago
I Need help with this problem i don’t know what to do
Mazyrski [523]

Answer:

The density of the sample is 36 g/cm³

Explanation:

m= 972g

l=3cm

V = l³ = 3³ = 27 cm³

density = mass/volume

= 972/27

= 36 g/cm³

8 0
3 years ago
What is the resolution of an analog-to-digital converter with a word length of 12 bits and an analogue signal input range of 100
Elena L [17]

Answer:

The resolution of an analog-to-digital converter is 24.41 mV

Explanation:

Resolution of an analog-to-digital  = (analogue signal input range)/2ⁿ

where;

n is the number or length of bit, and in this question it is given as 12

Also, the analogue signal input range is 100V

Resolution of an analog-to-digital  = 100V/2¹²

2¹² = 4096

Resolution of an analog-to-digital  = 100V/4096

Resolution of an analog-to-digital  = 0.02441 V = 24.41 mV

Therefore, the resolution of an analog-to-digital converter is 24.41 mV

5 0
3 years ago
Why are peer reviews important?
riadik2000 [5.3K]
Peer review is important because it is used by scientists to decided which results should be published in a scientific journal
8 0
3 years ago
Read 2 more answers
Other questions:
  • Are we the same age as the universe because matter cannot be created nor destroyed
    8·2 answers
  • a person hangs three pictures on the wall. the pictures all weigh the same. picture 1 and picture 2 are at the same height above
    8·2 answers
  • Width, height, thickness and thermal conductivity of a single pane window and the air space of a double pane window. Representat
    6·1 answer
  • How would you describe the relationship between the mass of a car and its kinetic energy?
    15·2 answers
  • A solid conducting sphere with radius RR that carries positive charge QQ is concentric with a very thin insulating shell of radi
    7·1 answer
  • The lens system within a camera forms a _______ on the sensor.        A. virtual, upright image   B. real, inverted image   C. r
    14·2 answers
  • 3.
    8·1 answer
  • What is uniform motion?
    9·1 answer
  • A laser emits a light beam with a wavelength of 630 nm. The jet passes a liquid with a refractive index of 1.3.
    12·1 answer
  • Scientists are able to use body waves to determine what makes up the different layers of the Earth's interior. What characterist
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!