Answer:
im not a brain wiz but i think 20
Explanation:
Answer:
47.01 g/mol is molar mass
Zeff is the effective nuclear charge wherein, Z resembles the number of protons in the nucleus while S corresponds to the number of non-valence electrons.
Zeff = Z - S
Silicon has 14 protons; its electron configuration is [Ne] 3s2 3p2. Its
non-valence electrons is in the n = 1 and n =2 shells. There are 2
electrons in n = 1 and 8 in n = 2, so there are a total of 10
non-valence electron.
<span><span>Z<span>eff</span></span>= 14−10= 4</span>
So, the answer is 4.
The correct answer is letter <span>C. mixture in which its components retain their identity. A heterogeneous mixture is a mixtures in which the component of the mixed are not uniform. You can see that there are localized regions that have different properties. The components have the capacity to retain their identity.</span>
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)