The person walking down the sidewalk follows the newton's third law of motion.
Explanation:
- A person is able to walk down the sidewalk by using the reaction forces from the ground.
- In simple term, feet pushes the ground and the reaction forces makes the feet able to walk.
- Another important force included in the walking mechanism is friction. With out friction one cannot walk down the sidewalks.
- Hence the forces involved in the walking of a person down the sidewalk are:
- Friction force
- Action and reaction force between ground and person's feet.
Answer:
392 Newtons
Explanation:
In order to find the weight, you have to multiply the mass by the gravitation constant (9.8), which gives us 40.0 * 9.8 = 392 Newtons.
Answer: D) none of the above
Explanation: This is a classic problem of thermodynamics, and refers to the principle of conservation of energy to give a correct answer
Option A) can be ruled out since no matter how much friction is reduced, it will always exist and therefore some energy will be lost
option B) and C) are out of context since the loss of work or energy will continue to exist even if those values are modified, so they do not answer the question
D) is the correct one since it should be said that this is not possible (so far...) as it goes against the conservation of energy and this option is none of the above
Explanation:
Calculating acceleration is complicated if both speed and direction are changing or if you want to know acceleration at any given instant in time. However, it’s relatively easy to calculate average acceleration over a period of time when only speed is changing. Then acceleration is the change in velocity (represented by Δv) divided by the change in time (represented by Δt):
acceleration=ΔvΔt
Visible light is the spectrum that humans can see ranging from 400-700 nm