Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + 13 x 2
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]
Answer:
A heat engine is a device that converts internal energy into work. Internal energy is increased by the addition of heat. The efficiency of a heat engine is a measurement of how efficiently it works. Efficiency compares the amount of useful energy extracted from a process to the total energy input. The heat engine will be more efficient if the percentage is higher.
Explanation:
Se llaman cuerpos eléctricos.
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.