Don't touch the center. It is already even.
Start anywhere by connecting a dotted line from one vertex to the next. To keep things so we know what we are talking about, go clockwise. Now you have 2 points that are Eulerized that were not before.
Skip and edge and do the same thing to the next two vertices. Those two become eulerized. Skip an edge and do the last 2.
Let's try to describe this better. Start at any vertex and number them 1 to 6 clockwise.
Join 1 to 2
Join 3 to 4
Join 5 to 6
I think 3 is the minimum.
3 <<<< answer
Answer:
The number of liters of 25% acid solution = x = 160 liters
The number of liters of 40% acid solution = y = 80 liters
Step-by-step explanation:
Let us represent:
The number of liters of 25% acid solution = x
The number of liters of 40% acid solution = y
Our system of Equations =
x + y = 240 liters....... Equation 1
x = 240 - y
A 25% acid solution must be added to a 40% solution to get 240 liters of 30% acid solution.
25% × x + 40% × y = 240 liters × 30%
0.25x+ 0.4y = 72...... Equation 2
We substitute 240 - y for x in Equation 2
0.25(240 - y)+ 0.4y = 72
60 - 0.25y + 0.4y = 72
Collect like terms
- 0.25y + 0.4y = 72 - 60
0.15y = 12
y = 12/0.15
y = 80 Liters
Solving for x
x = 240 - y
x = 240 liters - 80 Liters
x = 160 liters
Therefore,
The number of liters of 25% acid solution = x = 160 liters
The number of liters of 40% acid solution = y = 80 liters
Answer:
ok
Step-by-step explanation:
Answer:
(From left to right) 2, 4, 6, 8.
Step-by-step explanation:
Let <em>a</em> and <em>b</em> be the zeroes of <em>x</em>² + <em>kx</em> + 12 such that |<em>a</em> - <em>b</em>| = 1.
By the factor theorem, we can write the quadratic in terms of its zeroes as
<em>x</em>² + <em>kx</em> + 12 = (<em>x</em> - <em>a</em>) (<em>x</em> - <em>b</em>)
Expand the right side and equate the coefficients:
<em>x</em>² + <em>kx</em> + 12 = <em>x</em>² - (<em>a</em> + <em>b</em>) <em>x</em> + <em>ab</em>
Then
<em>a</em> + <em>b</em> = -<em>k</em>
<em>ab</em> = 12
The condition that |<em>a</em> - <em>b</em>| = 1 has two cases, so without loss of generality assume <em>a</em> > <em>b</em>, so that |<em>a</em> - <em>b</em>| = <em>a</em> - <em>b</em>.
Then if <em>a</em> - <em>b</em> = 1, we get <em>b</em> = <em>a</em> - 1. Substitute this into the equations above and solve for <em>k</em> :
<em>a</em> + (<em>a</em> - 1) = -<em>k</em> → 2<em>a</em> = 1 - <em>k</em> → <em>a</em> = (1 - <em>k</em>)/2
<em>a</em> (<em>a</em> - 1) = 12 → (1 - <em>k</em>)/2 • ((1 - <em>k</em>)/2 - 1) = 12
→ (1 - <em>k</em>)²/4 - (1 - <em>k</em>)/2 = 12
→ (1 - <em>k</em>)² - 2 (1 - <em>k</em>) = 48
→ (1 - 2<em>k</em> + <em>k</em>²) - 2 (1 - <em>k</em>) = 48
→ <em>k</em>² - 1 = 48
→ <em>k</em>² = 49
→ <em>k</em> = ± √(49) = ±7