I belive its D if not right sorry.
Answer:
Diluted concentration is 0.5M
Explanation:
Let's solve this with rules of three, although there is a formula to see it easier
In 1000 mL (1L), we have 2 moles of NaOH
In 250 mL we must have (250 . 2) / 1000 = 0.5 moles of NaOH
These moles will be also in 1 L of the final volume of the diluted solution
More easy:
1 L of solution has 0.5 moles of NaOH
Then, molarity is 0.5 M
The formula is: Concentrated M . Conc. volume = Diluted M . Diluted volume
2 M . 0.250L = 1L . Diluted M
0.5M = Diluted M
Answer:
1.023 J / g °C
Explanation:
m = 37.9 grams
ΔT = 25.0*C
H = 969 J
c = ?
The equation relating these equation is;
H = mcΔT
making c subject of formulae;
c = H / mΔT
c = 969 J / (37.9 g * 25.0*C)
Upon solving;
c = 1.023 J / g °C
The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.
<span>A covalent bond is a bond formed by atom sharing.
In water molecule, there are twice the number of hydrogen atoms than the oxygen atoms. Its structure is H-O-H. The electronegative difference between the H and O allows them to be polar because on side there is positive charge and on another side there is negative charge.</span>