Answer:
carbon dioxide
Explanation:
because we breath in oxygen and breath out Carbon
Answer:
The maximum pressure is 612.2 Pa
Explanation:
The pressure of the ice (P1) = 624 Pa
The temperature of the ice = 273.16 K
The maximum temperature the specimen = - 5 oC
= -5 + 273 = 268K
The maximum Pressure the freeze drying can be will be (P2) = ?
Using Pressure law, which shows the relationship between pressure and temperature.
P1 / T1 = P2 / T2
P2 T1 = P1 T2
P2 = P1 T2 / T1
P2 = 624 × 268 / 273.16
P2 = 612.2 Pa
The maximum pressure at which drying can be carried out is 612.2 Pa
Check the attached document more explanation. jjjjggggg
To measure length scientists may use rulers, meter sticks, etc. and to measure mass they may use a balance.
Answer: will have a greater partial charge.
Explanation:
A polar covalent bond is defined as the bond which is formed when there is a low difference of electronegativities between the atoms, thus resulting in charge difference. Example:
Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms and thus there is no charge difference. Example:
Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. The electronegative difference between the elements is high. The charges on cation and anion neutralise each other. Example:
Thus as will have greater partial charge.
Answer:
Energy in the campfire originates from the potential chemical energy of the wood, before it is burnt to warm and give light around the campfire.
Explanation:
For a camp fire, the energy input is in the form of the potential chemical energy, stored up in the firewood used to fuel the flame.
The energy output is in the form of heat energy that the campfire radiates all around, light energy given off from the flame, and a little bit of sound energy, heard in the cracking of the firewood as they burn in the flame.
chemical energy ⇒ heat energy + light energy + sound energy