Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH. In variable form, a thermochemical equation would look like this:
A + B → CΔH = (±) #
Where {A, B, C} are the usual agents of a chemical equation with coefficients and “(±) #” is a positive or negative numerical value, usually with units of kJ.
please mark as brainliest
1. Crystallization. Magma cools either underground or on the surface and hardens into an igneous rock.
2. weathering and erosion
3. This happens due to geologic uplift and the erosion of the rock and soil above them. At the surface, metamorphic rocks will be exposed to weathering processes and may break down into sediment.
4. Rock Melting.
Metamorphic rocks underground melt to become magma. If you need more help https://www.ck12.org/earth-science/rock-cycle-processes/lesson/Rocks-and-Processes-of-the-Rock-Cycle-HS-ES/