Answer:

Step-by-step explanation:
<u>Given Data:</u>
Base area =
= 108 in.²
Volume = V = 729 in.³
<u>Required:</u>
Height = h = ?
<u>Formula:</u>

<u>Solution:</u>
For h, rearranging formula:
![\displaystyle h = \frac{V}{A_{B}} \\\\h =\frac{729 \ in.^3}{108 \ in.^2} \\\\h = 6.75 \ in.\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20h%20%3D%20%5Cfrac%7BV%7D%7BA_%7BB%7D%7D%20%5C%5C%5C%5Ch%20%3D%5Cfrac%7B729%20%5C%20in.%5E3%7D%7B108%20%5C%20in.%5E2%7D%20%5C%5C%5C%5Ch%20%3D%206.75%20%5C%20in.%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
(x+(x+2)+(x+4)+(x+6))=4x+12=212
x+x+x+x(2+4+6)=4x+12=212
4x (2+4+6)=4x+12=212
4x(6+6)=4x+12=212
12+4x=4x+12=212
<u>-12 -12 -12</u>
4x=4x=200
<u>/4 /4 /4</u>
<u>x=x=50</u>
<u>x=50</u>
Answer:
A = 374.123 ft^2
Step-by-step explanation:
First, lets calculate the perimeter:
Perimeter (p) = side length (s) * number of sides (n)



Next, lets find the apothem, which is the shortest length from any side to the middle. It's like the radius in a circle, but more complicated.
Apothem (a) = side length (s) / ( 2 * tan(180/number of sides (n)) )







Now, finally, to find the area of a regular polygon, we use the following equation:
Area (A) = ( apothem (a) * perimeter (p) ) / 2




Turning into a decimal:
