Your answer would be 600. all u have to do is multiply the degree rotation to the radius.
hope this has helped.
Answer: I believe this will be your answer for this.
<u>x = </u>
<u> so basically this is your solution of x equaling to 2 over 729.</u>
<u>(hope this helps!)</u>
<span>Draw a regular hexagon. Connect the center to each of the six vertices. Thus, you have six triangles, each with base 10.. The apothem is the height of each triangle. Then the area of each triangle is (1/2)(10)(12) = 60. You have six triangles so the aarea of the hexagon is 6*60 = 360.</span>
Answer:
La norma de los signos es para el producto de números reales, y la norma es la siguiente.
(+)*(+) = (+)
(+)*(-) = (-)
(-)*(+) = (-)
(-)*(-) = (+)
Es decir, el producto de dos números de mismo signo es siempre positivo
El producto de dos números de distinto signo es siempre negativo.
Particularmente, para la suma esta norma no funciona (pues no está definida para la suma)
Pero en casos como:
5 - (-4)
(esto sería: "la diferencia entre cinco y menos cuatro")
notar que podemos reescribir esto como:
5 + (-1)*(-4)
Ahora podemos aplicar la norma de los signos:
5 + 4 = 9
Donde aplicamos la norma de los signos,
Podemos concluir que, si bien es una regla que aplica al producto, siempre la tenemos que tener en cuenta en cualquier operación que hagamos.
Por lo podemos concluir que la respuesta correcta es verdadero.
Step-by-step explanation:
what is the main condition the lengths of the sides of a right-angled triangle have to fulfill ?
Pythagoras !
c² = a² + b²
c is the Hypotenuse (the baseline opposite of the 90 degree angle), a and b are the so-called legs (the sides enclosing the 90 degree angle).
only if there is a combination of the sides, for which the Pythagoras equation is true, do we have a right-angled triangle. otherwise not.
we also know CA = 18 - 7 - 3 = 8 cm
so, let's try
8² = 7² + 3²
64 = 49 + 9 = 58 wrong
7² = 8² + 3²
49 = 64 + 9 = 73 wrong
3² = 8² + 7²
9 = 64 + 49 = 113 wrong
so, there is no combination, where the Pythagoras equation is true, so it is NOT a right-angled triangle.