C...........................................
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from graph.</em>
Point (1, -5)
Point (7, -1)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute [SF]:

- Add/Subtract:

- Simplify:

The two cities are actually 427.5 miles apart.
<h3> Learning task 1</h3>
1. <u> </u><u> </u><u>3</u><u>.</u><u> </u><u> </u> 3. <u> </u><u> </u><u>1</u><u>. </u><u> </u>
4. 2
2. <u> </u><u> </u><u> </u><u>5</u><u>.</u><u> </u> 4. <u> </u><u> </u><u>6</u><u>. </u><u> </u>
9. 13
5. <u> </u><u> </u><u> </u><u>3</u><u>. </u> 6. <u> </u><u> </u><u> </u><u>7</u><u>. </u><u> </u>
5. 9
Step by step explanation:
hopefully that's help