Answer:
OPTION C) All hydrogen ions and all hydroxide ions have reacted to produce water, and so neither ion remains free in solution.
Explanation:
The PH reading on the left axis of the graph shows a value of 7.
A value of 7 on the PH scale implies that equal number of hydrogen ions completely reacted with hydroxyl ions to produce water i.e there is no excess of hydrogen and hydroxyl ion remaining in solution.
For values greater than 7, a basic solution is formed and it signifies the presence of excess hydroxyl ion. If the value is less than 7, there is more hydrogen ions in the solution formed and it is said to be acidic.
At point 7, the hydrogen and hydroxyl ions are equal and completely neutralize out one another.
Note: The acid solution would require a base volume of 20mL to be completely neutralized according to the plot. If it is less, the PH shifts to the left and the solution becomes acidic. If it more, the solution becomes basic and the PH shifts rightwards.
Answer:
#1
Heat transfer occurred in the room through radiation
This is where heat is transmitted through vacuum or an empty space from a point to another.
#2
From the furnace, the air molecules nearer the region gained higher kinetic energy hence colliding with other molecules in the room. This causes a positive temperature gradient which causes an increment change in temperature in the room.

Nitrogen is 1.25 g/L
Sulfur Dioxide is 2.86 g/L
Methane is 0.174 g/L
Hope I helped :)
Freezing point is the temperature at which a substance undergoes a phase transition from liquid to solid state. Water converts from liquid state to solid ice at a temperature of
.
Mass is the amount of matter contained in a substance. The SI unit of mass is kilogram. 1 kilogram is equal to 1000 g. One kilogram is defined as the mass of one cubic decimeter of water at the freezing point of water.
Chemical Reactions
Chemical changes take place when molecules or elements interact with other elements or molecules to form new chemical compounds. In order for a reaction to take place between molecules and or atoms, these molecules must come into contact with each other.
An example of a chemical reaction can be shown by the reaction of ammonia with hydrogen chloride to form ammonium chloride. This reaction is usually shown by a shorthand method called a chemical equation. The chemical equation for this reaction is...
NH3 + HCl � NH4Cl
This equation does not clearly show what has happened. In order for these two molecules to react, the pair of electrons on nitrogen must collide with the hydrogen atom of the hydrogen chloride on the side exactly opposite of the chlorine atom.
This collision must not only be precise as to the angle of the collision, it must have enough energy to break the bond between the hydrogen atom and the chlorine atom and form a new bond between the hydrogen atom and the nitrogen atom. Energy is released when a bond is formed. If all of these requirements are met, a reaction occurs forming a new compound.

The rate of a chemical reaction depends on all of the above factors. The reaction rate is measured by the change in concentration of one of the reactants or products over a measured period of time.
If some reaction condition is changed, the reaction rate will be changed.
Reaction coordinate diagrams are used to visualize the energy changes in chemical reactions. Some initial energy must be applied to any reaction in order to get the reaction started. This energy is called the energy of activation Ea.
If a reaction releases more energy than it takes to keep it going, it is called an exothermic reaction.

If a reaction requires a constant application of energy to keep it going, it is called an endothermic reaction.

A catalyst is something that, when added to a chemicalreaction, will increase the reaction rate without undergoing a permanent change. Although it appears that only Ea is lowered for a catalyzed reaction, the actual reaction pathway must change due to the involvement of the catalyst with the reactants. The energy released for the reaction remains the same. Catalysts are used extensively in biochemical reactions in order to decrease the energy demands for the animal or plant.

Matter can neither be gained nor lost in a chemical reaction. The number and type of atoms in the reactants must exactly equal the number and types of atoms in the products. The arrangement of the atoms will be different because new compounds are formed. Therefore, we must balance chemical equations with respect to the numbers of all of the atoms that are involved in the reaction.