Answer: When a ray of light approaches a smooth polished surface and the light ray bounces back, it is called the reflection of light. The incident light ray which lands upon the surface is said to be reflected off the surface. The ray that bounces back is called the reflected ray.<u>
</u>
<u>
</u>
<u>
</u>Have a great day and stay safe !
Answer:
The answer to your question is: C. -9.81 m/s²
Explanation:
A. 9.81 m/s² acceleration is considered positive when it goes to the center of the earth, so this option is incorrect.
B. 0 m/s² This option is incorrect because acceleration is 0 for a linear motion without acceleration.
C. -9.81 m/s² If a projectile goes to the sky, then the acceleration will be negative.
D. It is not constant. Acceleration is constant.
<span>A boat would
produce the highest concentration of carbon monoxide in the exhaust system.
</span>Carbon monoxide<span> (CO) is a colorless, odorless, and tasteless gas that is
slightly less dense than air. It is toxic to </span>hemoglobic<span> <span>animals (both </span></span>invertebrate<span> <span>and
vertebrate, including humans) when encountered in concentrations above about 35 </span></span>ppm<span>.</span>
That is FALSE. The equation to calculate the charges has a distance component that is in the denominator which means that it is inversely proportional (as the distance os greater the force is smaller)
Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N