The answer is he weighs 187.39 LBS/Pounds
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Its Kinetic, hope this helps you
Answer:
288.0 units; that is the electrostatic force of attraction become quadruple of its initial value.
Explanation:
If all other parameters are constant,
Electrostatic Force of attraction ∝ (1/r²)
F = (k/r²) = 72.0
If r₁ = r/2, what happens to F₁
F₁ = (k/r₁²) = k/(r/2)² = (4k/r²) = 4F = 4 × 72 = 288.0 units