Answer:
to a warm front. Remember to include all data collected on warm fron … ... Remember to include all data collected on warm fronts in this activity to support your answer (examples: interaction of air masses, air pressure, cloud cover, temperature behind/ahead of front, wind direction, precipitation, etc. 1
Explanation:
Answer:
1) as far as I remember
Let's take 20 as vf (final velocity) and 11 as (initial velocity) and 4 as time
So we would use this formula a=vf-vi/t
So 20-11/4
Asnwer 2.25
Answer:
The correct answer is option 'a': It decreases with increase in altitude
Explanation:
Acceleration due to gravity is the acceleration that a body is subjected to when it is freely dropped from a height from surface of any planet, ignoring the resistance that the object may face in it's motion such as drag due to any fluid.. The acceleration due to gravity is same for all the objects and is independent of their masses, it only depends on the mass of the planet and the radius of the planet on which the object is dropped. it's values varies with:
1) Depth from surface of planet.
2)Height from surface of planet.
3) Latitude of the object.
Hence it neither is a fundamental quantity nor an universal constant.
The variation of acceleration due to gravity with height can be mathematically written as:

where,
R is the radius of the planet
is value of acceleration due to gravity at surface.
hence we can see that upon increase in altitude the value of 'g' goes on decreasing.
Answer:
Electromagnetic waves
Electromagnetic waves bring energy into a system by virtue of their electric and magnetic fields. These fields can exert forces and move charges in the system and, thus, do work on them. However, there is energy in an electromagnetic wave itself, whether it is absorbed or not.
So the answer is B electrical energy
Thank you and please rate me as brainliest as it will help me to level up