Answer:
a. They will be tie
b. Win the wood cylinder
Explanation:
a.
The both cylinders will reach the bottom at the same time notice the relation in the equation in indepent of the length and both have the same radius and the same rotational inertia.


So both will be tie
b.

The acceleration of the wood cylinder is larger than the acceleration of the brass cylinder so the cylinder of wood will reach the bottom first

So the wood win the race
Answer:
F = 12.5N
Explanation:
Force (F) = Mass (m) x Acceleration (a)
F = ma
F = (2.5kg) x (5m/s^2)
F = 12.5N
Answer:
1. a) 72 N.
2. a) 2 m/s².
Explanation:
Given the following data;
1. Mass = 90kg
Acceleration = 0.8 m/s²
To find the force;
Force = mass * acceleration
Force = 90 * 0.8
Force = 72 Newton.
2. Mass = 50kg
Force = 100N
To find the magnitude of acceleration;
Acceleration = force/mass
Acceleration = 100/50
Acceleration = 2 m/s²
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
That would be like dropping your cell phone on to the ground by accident. The object (cell phone)'s gravitational potential energy would be converted to kinetic energy or energy in motion more precisely. This is just a hypothetical example though.