These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
10.3 is good the correct rounding of three sig figures
Mercury exist as liquid at normal earth tempertures
<h3>
Answer:</h3>
8 alpha particles
4 beta particles
<h3>
Explanation:</h3>
<u>We are given;</u>
- Neptunium-237
- Thallium-205
- Neptunium-237 undergoes beta and alpha decay to form Thallium-205.
We are required to determine the number of beta and alpha particles produced to complete the decay series.
- We need to know that when a radioisotope emits an alpha particle the mass number reduces by 4 while the atomic number decreases by 2.
- When a beta particle is emitted the mass number of the radioisotope increases by 1 while the atomic number remains the same.
In this case;
Neptunium-237 has an atomic number 93, while,
Thallium-205 has an atomic number 81.
Therefore;
²³⁷₉₃Np → x⁴₂He + y⁰₋₁e + ²⁰⁵₈₁Ti
We can get x and y
237 = 4x + y(0) + 205
237-205 = 4x
4x = 32
x = 8
On the other hand;
93 = 2x + (-y) + 81
but x = 8
93 = 16 -y + 81
y = 4
Therefore, the complete decay equation is;
²³⁷₉₃Np → 8⁴₂He + 4⁰₋₁e + ²⁰⁵₈₁Ti
Thus, Neptunium-237 emits 8 alpha particles and 4 beta particles to become Thallium-205.
DescriptionA chemical property is any of a material's properties that becomes evident during, or after, a chemical reaction; that is, any quality that can be established only by changing a substance's chemical identity.