<u>Answer:</u> The value of <em>i</em> is 1.4 and 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
<u>Explanation:</u>
The equation used to calculate the Vant' Hoff factor in dissociation follows:

where,
= degree of dissociation = 40% = 0.40
i = Vant' Hoff factor
n = number of ions dissociated = 2
Putting values in above equation, we get:

The equation used to calculate the degee of dissociation follows:

Total number of particles taken = 100
Degree of dissociation = 40% = 0.40
Putting values in above equation, we get:

This means that 40 particles are dissociated and 60 particles remain undissociated in the solution.
Hence, 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
Answer:
Water has a molar mass of 18.015 g/mol . This means that one mole of water molecules has a mass of 18.015 g . So, to sum this up, 6.022⋅1023 molecules of water will amount to 1 mole of water, which in turn will have a mass of 18.015 g . 2.7144moles H2O ⋅6.022⋅1023molec.
Explanation:
Explanation:
The <u>First Law of Thermodynamics</u> states that energy cannot be created or destroyed in an isolated system. In other words, energy can be converted from one form into another, but it cannot be created nor destroyed.
<u>Conduction</u> is the transfer of energy from one molecule to another by direct contact. This transfer occurs when molecules hit against each other, which can take place in solids, liquids, and gases.
When you put your cold hands under your legs to warm your hands up, the heat energy from your legs is being transferred to your hands through conduction. However, since energy cannot be created, there is no extra heat energy that can instantaneously replace the heat created by your legs.
Answer:
Because the molecules have not been in water so they are not moving around each other
Explanation: