1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
3 years ago
13

Suppose we have a right triangle with legs of length a and b and hypotenuse of length c. Suppose b=3 and c=5. Then a= , For the

opposing angles, we have sin(A)= , cos(A)= , and tan(A)= .
Mathematics
1 answer:
ANTONII [103]3 years ago
7 0

Answer:

Length of right-angle  triangle 'a' = 4

b)

<u><em></em></u>sin(A) = \frac{opposite side}{Hypotenuse} = \frac{a}{c} = \frac{4}{5}<u><em></em></u>

<u><em></em></u>cos(A) = \frac{Adjacent side}{Hypotenuse} = \frac{b}{c} = \frac{3}{5}<u><em></em></u>

<u><em></em></u>tan(A) = \frac{opposite side}{Adjacent side} = \frac{a}{b} = \frac{4}{3}<u><em></em></u>

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given  b = 3 and hypotenuse c = 5

Given ΔABC  is a right angle triangle

By using pythagoras theorem

        c² = a² + b²

  ⇒ a² = c² - b²

 ⇒  a² = 5²-3²

          =25 - 9

      a² = 16

⇒   a = √16 = 4

The sides of right angle triangle  a = 4 ,b = 3 and c = 5

<u><em>Step(ii):-</em></u>

<u><em></em></u>sin(A) = \frac{opposite side}{Hypotenuse} = \frac{a}{c} = \frac{4}{5}<u><em></em></u>

<u><em></em></u>cos(A) = \frac{Adjacent side}{Hypotenuse} = \frac{b}{c} = \frac{3}{5}<u><em></em></u>

<u><em></em></u>tan(A) = \frac{opposite side}{Adjacent side} = \frac{a}{b} = \frac{4}{3}<u><em></em></u>

You might be interested in
If
Kamila [148]

Answer Interest rate = 12.3%

The compound interest formula is given by:

Where

A = Future amount

P = Present amount (Principal amount)

r = Interest rate in decimal form

n = No. of times compounded per year

t = time in years.

We can say that if:

Present amount = P

Future amount = 3P

r = 12.3/100 = 0.123

n = 1

t = ?

Substitute the values in the formula of compound interest:

Taking log on both sides.

Round off to nearest option

t ≅ 9 years

8 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
6 more than twice a number is greater than negative sixteen
Alexxandr [17]

Writing the problem as an equation you have:

2x+6 > -16

Solve for x:


2x+6 > -16

Subtract 6 from each side:

2x > -22

Divide both sides by 2:

x > -11


The answer is: x > -11


3 0
3 years ago
A block of gold has a mass of 9,660 kilograms has a volume of 0.5 cubic meters. What is the density of gold
Brums [2.3K]
9660 divided by 0.5 = 19,320
4 0
3 years ago
Easy<br> a) -2,-5.-8.-11,...
aleksklad [387]

Step-by-step explanation:

???????? what is easy??

6 0
3 years ago
Read 2 more answers
Other questions:
  • It is cloudy outside. What is the first step of indirectly proving this statement?
    14·1 answer
  • What are these two answers. Please
    6·1 answer
  • Gina has a traditional health insurance plan. Her deductible is $500. The level of co-insurance for her plan is 80/20, where 20
    8·2 answers
  • I would like to know what ten pulse ten is?
    6·1 answer
  • The deli owner expects 750 customers. Based on the samples, about how many turkey sandwiches will the deli sell? Enter your answ
    6·2 answers
  • A brother and a sister are in the same math class. There are 8 boys and 10 girls in the class. One boy and one girl are randomly
    7·1 answer
  • Eryn's pet rabbit eats 1/12 pound of food every day. If Eryn buys rabbit food in 5 pounds bags how many days does one bag of rab
    7·1 answer
  • F(x) = 6^x for x=3<br> are the function for the given value:
    15·1 answer
  • Ummmmmmmmmm yeah helppppppppppp
    15·2 answers
  • Classify each triangle by its angles and sides.<br><br>ABE<br><br>BEC<br><br>DEF<br><br>CDF​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!