Answer:
The maximum volume of the package is obtained with a cross section of side 18 inches and a length of 36 inches.
Step-by-step explanation:
This is a optimization with restrictions problem.
The restriction is that the perimeter of the square cross section plus the length is equal to 108 inches (as we will maximize the volume, we wil use the maximum of length and cross section perimeter).
This restriction can be expressed as:

being x: the side of the square of the cross section and L: length of the package.
The volume, that we want to maximize, is:

If we express L in function of x using the restriction equation, we get:

We replace L in the volume formula and we get

To maximize the volume we derive and equal to 0

We can replace x to calculate L:

The maximum volume of the package is obtained with a cross section of side 18 inches and a length of 36 inches.
Answer:
3
Step-by-step explanation:
from the question,you get an expresion of
6n-5= n + 10
5n = 15
Isolate n
5n/5 = 15/5
n+3
C: Moved down and to the left
First, let's calculate the mean and the mean absolute deviation of the first bowler.
FIRST BOWLER: <span>8,5,5,6,8,7,4,7,6
Mean = (Sum of all data)/(Number of data points) = (8+5+5+6+8+7+4+7+6)/9
<em>Mean = 6.222</em>
Mean absolute deviation or MAD = [</span>∑(|Data Point - Mean|]/Number of Data Points
MAD = [|8 - 6.222| + |5 - 6.222| + |5 - 6.222| + |6 - 6.222| + |8 - 6.222| + |7 - 6.222| + |4 - 6.222| + |7 - 6.222| + |6 - 6.222|]/9
<em>MAD = 1.136</em>
SECOND BOWLER: <span>10,6,8,8,5,5,6,8,9
</span>Mean = (Sum of all data)/(Number of data points) = (<span>10+6+8+8+5+5+6+8+9</span>)/9
<em>Mean = 7.222</em>
Mean absolute deviation or MAD = [∑(|Data Point - Mean|]/Number of Data Points
MAD = [|10 - 7.222| + |6 - 7.222| + |8 - 7.222| + |8 - 7.222| + |5 - 7.222| + |5 - 7.222| + |6 - 7.222| + |8 - 7.222| + |9 - 7.222|]/9
<em>MAD = 1.531
</em>
The mean absolute deviation represents the average distance of each data to the mean. Thus, the lesser the value of the MAD is, the more consistent is the data to the mean. <em>B</em><em>etween the two, the first bowler is more consistent.</em>
Answer:
Step-by-step explanation:

= 8%