Answer:
Green
Explanation:
Positive: A strong green color in the flame indicates the presence of halogens (chloride, bromide, iodide but not fluoride).
To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
Within the options, we have four organic compounds. Let's see what the skeletal structure of the compounds is in order to identify them better:
The first compound CH3OCH3 has two methyl groups linked by a carbon atom, this type of compound is called an Ether
The second compound has a double bond, it is badly written but it seems that is an alkene.
The third compound has two methyl groups linked by nitrogen atoms, therefore will be an amine.
The last compound has a hydroxyl group, therefore it is an alcohol
Answer:
CH3OCH3 Ether
CH2CH2CHCH2CH3 Alkene
CH3NHCH3 Amine
CH3CH(OH)CH₂CH3 Alcohol
<h3>
<u>moles of H2SO4</u></h3>
Avogadro's number (6.022 × 1023) is defined as the number of atoms, molecules, or "units of anything" that are in a mole of that thing. So to find the number of moles in 3.4 x 1023 molecules of H2SO4, divide by 6.022 × 1023 molecules/mole and you get 0.5646 moles but there are only 2 sig figs in the given so we need to round to 2 sig figs. There are 0.56 moles in 3.4 x 1023 molecules of H2SO4
Note the way this works is to make sure the units are going to give us moles. To check, we do division of the units just like we were dividing two fractions:
(molecules of H2SO4) = (molecules of H2SO4)/1 and so we have 3.4 x 1023/6.022 × 1023 [(molecules of H2SO4)/1]/[(molecules of H2SO4)/(moles of H2SO4)]. Now, invert the denominator and multiply:
<h3 />
Explanation:
what do you have written I can't understand one word right a properly