Answer:
(C)
Step-by-step explanation:
It is given that a right triangle, ACB which is right angled at C has BC = 24 inches, and AB = 25 inches.
We know that m∠C=90°,
Using the trigonometry in ΔACB, we have
![sinB=\frac{AC}{AB}](https://tex.z-dn.net/?f=sinB%3D%5Cfrac%7BAC%7D%7BAB%7D)
Substituting the given values, we get
⇒![sinB=\frac{24}{25}](https://tex.z-dn.net/?f=sinB%3D%5Cfrac%7B24%7D%7B25%7D)
⇒![B=sin^{-1}(0.96)](https://tex.z-dn.net/?f=B%3Dsin%5E%7B-1%7D%280.96%29)
⇒![B=73.7^{\circ}](https://tex.z-dn.net/?f=B%3D73.7%5E%7B%5Ccirc%7D)
Also, ![sinA=\frac{CB}{AB}](https://tex.z-dn.net/?f=sinA%3D%5Cfrac%7BCB%7D%7BAB%7D)
Substituting the given values, we get
⇒![sinA=\frac{7}{25}](https://tex.z-dn.net/?f=sinA%3D%5Cfrac%7B7%7D%7B25%7D)
⇒![A=sin^{-1}(0.28)](https://tex.z-dn.net/?f=A%3Dsin%5E%7B-1%7D%280.28%29)
⇒![A=16.3^{\circ}](https://tex.z-dn.net/?f=A%3D16.3%5E%7B%5Ccirc%7D)
Therefore, the measure of the angles in triangle ABC are m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°.
Thus, option C is correct.