Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
Answer:
V₂=4.57 x 10³ L
Explanation:
Given that
V₁= 2.88 x 10³ L
P₁=722 mm Hg
T₁ = 19°C
T₁ =292 K
P₂=339 mm Hg
T₂= - 55°C
T₂=218 K
Lets take final volume = V₂
We know that ideal gas equation
PV = m R T
By applying mass conservation


V₂=4.57 x 10³ L
Therefore volume will be 4.57 x 10³ L
Answer:
D The chemicals on the right side of a chamical equation
Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:

The smallest size of the insect that the bats can detect corresponds to the wavelength of the chirp they emit.
Their chirp has a frequency of

and the speed of the chirp is equal to the speed of sound in air:

Therefore the wavelength of the chirp is

which corresponds to a size of 4.76 mm.