Answer:
9x^2(5y^2 + 2x).
Step-by-step explanation:
First find the Greatest Common Factor of the 2 terms.
GCF of 18 and 45 = 9
GCF of x^2 and x^3 = x^2.
The complete GCF is therefore 9x^2.
So, dividing each term by the GCF, we obtain:
9x^2(5y^2 + 2x).
So we can start with the full of possibilities and eliminate them one by one.
The full set is {0,1,2,3,4,5,6,7,8,9}.
Now we know that any prime greater than 2 is odd as otherwise it would have 2 as a factor, so we can eliminate all of these digits that would be an even number, leaving:
{1,3,5,7,9}
We also know that any prime greater than 5 cannot be a multiple of 5 and that all numbers with 5 in the digits are a multiple of 5, so we can eliminate 5.
{1,3,7,9}
We know that 11,13,17 and 19 are all primes, so we cannot eliminate any more of these, leaving the set:
{1,3,7,9} as our answer.
Answer:
It's like solving a quadratic, but in reverse, and in this case you'll arrive at x2+x−12=0
Explanation:
We're going to go "backwards" with this problem - normally we're asked to take a quadratic equation and find the roots. So we'll do what we normally do, but in reverse:
Let's start with the roots:
x=3, x=−4
So let's move the constants over with the x terms to have equations equal to 0:
x−3=0, x+4=0
Now we can set up the equation, as:
(x−3)(x+4)=0
We can now distribute out the 2 quantities:
x2+x−12=0
Answer:
40
Step-by-step explanation:
3a + 2b =
3(10) + 2(5)
30 + 10 = 40
I hope this helps!
Have a great day!
Answer:
k = 0.25
Step-by-step explanation:
The standard equation of a proportional relationship is
y = kx ← k is the constant of proportion
y = 0.25x ← is in this form
with k = 0.25