<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 
Answer:
Isoelectronicity may be used to predict the properties and reactions of a species. It is used to identify hydrogen-like atoms, which have one valence electron and are thus isoelectronic to hydrogen.
Explanation:
Answer:
a)
[SO2]: The concentration increases
[O2]: The concentration increases.
[SO3]: The concentration decreases.
b)
[SO2]: The concentration decreases.
[O2]: The concentration decreases.
[SO3]: The concentration increases.
c)
[SO2]:There is no change.
[O2]: There is no change.
[SO3]: There is no change
Explanation:
For an exothermic reaction, increase in temperature decreases the concentration of products and increases the concentration of reactants since increase in temperature shifts the equilibrium position to the left hand side.
Increase in pressure and decrease in volume will shift the equilibrium position towards the right hand side which means more SO3 in the system.
Catalyst increases the rate of forward and reverse reaction simultaneously hence at equilibrium, the concentration of reactants and products remain unchanged.
Answer:
Explanation:
- MgO = __2__ atoms
2- Rb2S = __3__ atoms
3- Ca(OH)2 = __5__ atoms
4- K2SO4 = __7__ atoms
5- Ga2(CO3)2 = __10__ atoms
Answer:
Vertebrae
Explanation:
Vertebrae are the 33 individual bones that interlock with each other to form the spinal column. The vertebrae are numbered and divided into regions: cervical, thoracic, lumbar, sacrum, and coccyx (Fig. 2). Only the top 24 bones are moveable; the vertebrae of the sacrum and coccyx are fused.