Answer: Option (B) is the correct answer.
Explanation:
Equilibrium constant is defined as the relationship present between the amounts of products and reactants which are there at equilibrium in a reversible chemical reaction at a given temperature.
For example, 
Mathematically, ![K_{eq} = [C][D]](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5BC%5D%5BD%5D)
As the value of equilibrium constant depends on rate constants of the forward and reverse reactions. And, this rate of reaction also changes with change in pressure and temperature.
Therefore, it will also lead to change in equilibrium constant but it does not depend on initial amount pf reactants.
Thus, we can conclude that in general, the value of the equilibrium constant for a chemical reaction does NOT depend on the initial amounts of reactants present.
A asystem at equilibrium stops
Answer:
C
Explanation:
okay, you need to look at the structures of the particles of matter in the solid, liquid and gas.
- particles in a solid are in fixed positions, where they can only vibrate in those positions ( take a look at ice, or rather, a brick)
- liquids have very small or rather, no spaces between them, but they can slide or rub against each other, like people in a <em>really tight</em> crowd I guess
- gas particles have very large spaces between them and they move randomly. these exibit what's called brownian motion.
- since water particles (and all other liquid particles) have negligible spacings and limited movement, that allows the dye particles to move from a region of high concentration to that of a low concentration. the aim for this is for the mixture/solution to reach an equilibrium, that is the mixture must get to a point where all regions have the same concentration of the dye.
you can refer to your coursebooks :)
correct where wrong please:)
Answer:
D. Grams liquid x mol/g x delta Hfreezing
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to reason that the stoichiometry used to calculate energy released when a mass of liquid freezes, involves the grams of the liquid, the molar mass of the liquid, as given in all the group choices, and the enthalpy of freezing because that is the process whereby a liquid goes solid.
In such a way, we infer that the correct factor would be D. Grams liquid x mol/g x delta Hfreezing which sometimes is the negative of the enthalpy of fusion as they are contrary processes.
Regards!