1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
3 years ago
7

50 grams of water is placed into a beaker the mass of the beaker is now 115 grams what is the mass of the empty beaker

Chemistry
1 answer:
marissa [1.9K]3 years ago
6 0
65 Grams is the mass of the beaker because you just take the mass   of Water + Beaker and take the water away now you have the mass of the beaker
You might be interested in
An example of a suspension is:<br> A. blood<br> B. gelatin<br> C. muddy water<br> D. milk
Shkiper50 [21]
ANSWER:A.blood

WHY: because it make the most sense and it seem right


Can I get brainly
3 0
3 years ago
Which of the following alcohols will give a positive chromic acid test?
Sindrei [870]
The answer is both B and C

positive chromic acid test is indicated by disappearance of orange colour from chromic ions and appearance of blue-green color from Chromium (iii) ion (reduction of chromium ion from CrO4 - to Cr3+)

positive chromic test indicated functional groups that can be oxidized.

cyclohexanol can be oxidized to become cyclohexanone

and pentan-3-ol can be oxidized to become pentan-3-one

hence both B and C will show positive chromic acid test

A) tert butanol although contains alcohol functional group, cannot be further oxidized as it is a tertiary alcohol

3 0
2 years ago
The following data were collected for the rate of disappearance of NO in the reaction 2NO(g)+O2(g)→2NO2(g)::
Anit [1.1K]

Answer:

a) The rate law is: v = k[NO]² [O₂]

b) The units are: M⁻² s⁻¹

c) The average value of the constant is: 7.11 x 10³ M⁻² s⁻¹

d) The rate of disappearance of NO is 0.8 M/s

e) The rate of disappearance of O₂ is 0.4 M/s

Explanation:

The experimental rates obtained can be expressed as follows:

v1 = k ([NO]₁)ᵃ ([O₂]₁)ᵇ = 1.41 x 10⁻² M/s

v2 = k ([NO]₂)ᵃ ([O₂]₂)ᵇ = 5.64 x 10⁻² M/s

v3 = k ([NO]₃)ᵃ ([O₂]₃)ᵇ = 1.13 x 10⁻¹ M/s

where:

k = rate constant

[NO]₁ = concentration of NO in experiment 1

[NO]₂ = concentration of NO in experiment 2

[NO]₃ = concentration of NO in experiment 3

[O₂]₁ = concentration of O₂ in experiment 1

[O₂]₂ = concentration of O₂ in experiment 2

[O₂]₃ = concentration of O₂ in experiment 3

a and b = order of the reaction for each reactive respectively.

We can see these equivalences:

[NO]₂ = 2[NO]₁

[O₂]₂ = [O₂]₁

[NO]₃ = [NO]₂

[O₂]₃ = 2[O₂]₂

So, v2 can be written in terms of the concentrations used in experiment 1 replacing [NO]₂ for 2[NO]₁ and [O₂]₂ by [O₂]₁ :

v2 = k (2 [NO]₁)ᵃ ([O₂]₁)ᵇ

If we rationalize v2/v1, we will have:

v2/v1 = k *2ᵃ * ([NO]₁)ᵃ * ([O₂]₁)ᵇ / k * ([NO]₁)ᵃ * ([O₂]₁)ᵇ (the exponent "a" has been distributed)

v2/v1 = 2ᵃ

ln(v2/v1) = a ln2

ln(v2/v1) / ln 2 = a

a = 2

(Please review the logarithmic properties if neccesary)

In the same way, we can find b using the data from experiment 2 and 3 and writting v3 in terms of the concentrations used in experiment 2:

v3/v2 = k ([NO]₂)² * 2ᵇ * ([O₂]₁)ᵇ / k * ([NO]₂)² * ([O₂]₂)ᵇ

v3/v2 = 2ᵇ

ln(v3/v2) = b ln 2

ln(v3/v2) / ln 2 = b

b = 1

Then, the rate law for the reaction is:

<u>v = k[NO]² [O₂]</u>

Since the unit of v is M/s and the product of the concentrations will give a unit of M³, the units of k are:

M/s = k * M³

M/s * M⁻³ = k

<u>M⁻² s⁻¹ = k </u>

To obtain the value of k, we can solve this equation for every experiment:

k = v / [NO]² [O₂]

for experiment 1:

k = 1.41 x 10⁻² M/s / (0.0126 M)² * 0.0125 M = 7.11 x 10³ M⁻² s⁻¹

for experiment 2:

k = 7.11 x 10³ M⁻² s⁻¹

for experiment 3:

k = 7.12 x 10³ M⁻² s⁻¹

The average value of k is then:

(7.11 + 7.11 + 7.12) x 10³ M⁻² s⁻¹ / 3 = <u>7.11 x 10³ M⁻² s⁻¹ </u>

The rate of the reaction when [NO] = 0.0750 M and [O2] =0.0100 M is:

v = k [NO]² [O₂]

The rate of the reaction in terms of the disappearance of NO can be written this way:

v = 1/2(Δ [NO] / Δt) (it is divided by 2 because of the stoichiometric coefficient of NO)

where (Δ [NO] / Δt) is the rate of disappearance of NO.

Then, calculating v with the data provided by the problem:

v = 7.11 x 10³ M⁻² s⁻¹ * (0.0750M)² * 0.0100M = 0.4 M/s

Then, the rate of disappearance of NO will be:

2v = Δ [NO] / Δt = <u>0.8 M/s</u>

The rate of disappearance of O₂ has to be half the rate of disappearance of NO because two moles of NO react with one of O₂. Then Δ [O₂] / Δt = <u>0.4 M/s</u>

With calculations:

v = Δ [O₂] / Δt = 0.4 M/s (since the stoichiometric coefficient is 1, the rate of disappearance of O₂ equals the rate of the reaction).

3 0
3 years ago
Aluminium is a metal give reason​
trapecia [35]

Answer:

Aluminium is ordinarily classified as a metal. It is lustrous, malleable and ductile, and has high electrical and thermal conductivity. Like most metals, it has a close-packed crystalline structure and forms a cation in an aqueous solution.

7 0
2 years ago
C-12, c-13, and c-14 have the same number of protons but different numbers of neutrons so they are
laiz [17]
Atoms with the same number of protons, but different numbers of neutrons are isotopes of the same element.
6 0
3 years ago
Other questions:
  • In animal cells, DNA is organized in the _______.
    13·2 answers
  • Label each Formula In the Chemical equation Below As either A reactant or a product
    10·1 answer
  • he standard enthalpies of formation for S (g), F (g), SF4 (g), and SF6 (g) are +278.8, +79.0, -775, and -1209 kJ per mole, respe
    13·1 answer
  • In a fixed volume, when temperature increases, pressure _______. *
    12·2 answers
  • Can anybody help me with these 2 ohms law
    5·1 answer
  • 4. If 175 undecayed nuclei remain from a sample of 2800 nuclei, how many half-
    9·1 answer
  • Name three instructions that DNA provides to a cell
    11·2 answers
  • 2.00 L of a gas is collected at 25.0°C and 745.0 mmHg. What is the volume at 760.0 mmHg
    10·1 answer
  • A ________________________ can be at the top of a food chain.
    8·1 answer
  • How much heat is required to raise the temperature of 25.0 grams of waterfrom 75.0°C to its boiling point?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!