1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klemol [59]
3 years ago
8

Hydrogen gas (a potential future fuel) can be formed by the reaction of methane with water according to the following equation:

CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)In a particular reaction, 25.5 L of methane gas (measured at a pressure of 732 torr and a temperature of 25 °C) is mixed with 22.0 L of water vapor (measured at a pressure of 704 torr and a temperature of 125 °C). The reaction produces 26.0 L of hydrogen gas measured at STP.What is the percent yield of the reaction?
Chemistry
2 answers:
dem82 [27]3 years ago
6 0

Answer:

The percent yield of the reaction is 62.05 %

Explanation:

Step 1: Data given

Volume of methane = 25.5 L

Pressure of methane = 732 torr

Temperature = 25.0 °C = 298 K

Volume of water vapor = 22.0 L

Pressure of H2O = 704 torr

Temperature = 125 °C

The reaction produces 26.0 L of hydrogen gas measured at STP

Step 2: The balanced equation

CH4(g) + H2O(g) → CO(g) + 3H2(g)

Step 3: Calculate moles methane

p*V = n*R*T

⇒with p = the pressure of methane = 0.963158 atm

⇒with V = the volume of methane = 25.5 L

⇒with n = the moles of methane = TO BE DETERMINED

⇒with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 298 K

n = (p*V) / (R*T)

n = (0.963158 * 25.5 ) / ( 0.08206 * 298)

n = 1.0044 moles

Step 4: Calculate moles H2O

p*V = n*R*T

⇒with p = the pressure of methane = 0.926316 atm

⇒with V = the volume of methane = 22.0 L

⇒with n = the moles of methane = TO BE DETERMINED

⇒with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 398 K

n = (p*V) / (R*T)

n = (0.926316 * 22.0) / (0.08206 * 398)

n = 0.624 moles

Step 5: Calculate the limiting reactant

For 1 mol methane we need 1 mol H2O to produce 1 mol CO and 3 moles H2

H2O is the limiting reactant. It will completely be consumed (0.624 moles).

Methane is in excess. There will react 0.624 moles. There will remain 1.0044 - 0.624 moles = 0.3804 moles methane

Step 6: Calculate moles hydrogen gas

For 1 mol methane we need 1 mol H2O to produce 1 mol CO and 3 moles H2

For 0.624 moles H2O we'll have 3*0.624 = 1.872 moles

Step 9: Calculate volume of H2 at STP

1.0 mol at STP has a volume of 22.4 L

1.872 moles has a volume of 1.872 * 22.4 = 41.9 L

Step 10: Calculate the percent yield of the reaction

% yield = (actual yield / theoretical yield) * 100 %

% yield = ( 26.0 L / 41.9 L) *100 %

% yield = 62.05 %

The percent yield of the reaction is 62.05 %

spayn [35]3 years ago
3 0

Answer:

62.02 %

Explanation:

The percent yield of the reaction can be calculated using the following equation:

\% = \frac{y_{e}}{y_{t}}*100

<u>Where:</u>

y_{e}: is the experimental yield

y_{t}: is the theoretical yield

We can see that we need to find the theoretical yield and the experimental yield.

To calculate the theoretical yield we need to find the number of moles of the reactants using the Ideal Gas Law:

n_{CH_{4}} = \frac{PV}{RT}

<u>Where:</u>

P: is the pressure of the gas = 732 torr

V: is the volume of the gas = 25.5 L

R: is the gas constant = 0.082 L*atm/(K*mol)

T: is the temperature = 25 °C

Hence the number of moles of the methane is:

n_{CH_{4}} = \frac{732 torr \cdot \frac{1 atm}{760 torr}*25.5 L}{0.082 L*atm*K^{-1}*mol^{-1}*(25 + 273 K)} = 1.005 moles

Similarly, the number of moles of the water vapor is:

n_{H_{2}O} = \frac{704 torr \cdot \frac{1 atm}{760 torr}*22.0 L}{0.082 L*atm*K^{-1}*mol^{-1}*(125 + 273 K)} = 0.624 moles  

Now, we need to find the limiting reactan. In the following equation:

CH₄(g) + H₂O(g)  →  CO(g)  + 3H₂(g)  

we have that 1 mol of CH₄ reacts with 1 mol of H₂O:

\frac{1 mol CH_{4}}{1 mol H_{2}O}*0.624 moles H_{2}O = 0.624 moles CH_{4}

We need 0.624 moles of CH₄ to react with H₂O, and we have 1.005 moles of CH₄. Therefore, the limiting reactant is the H₂O.

Since 1 mol of H₂O produces 3 moles of H₂, the number of H₂ moles  produced is:

\frac{3 mol H_{2}}{ 1 mol H_{2}O}*0.624 moles H_{2}O = 1.872 moles  

The experimental yield is:

n = \frac{PV}{RT} = \frac{1 atm*26.0 L}{0.082 L*atm*K^{-1}*mol^{-1}*273 K} = 1.161 moles

Finally, the percent yield of the reaction is:

% y = \frac{26.0 L}{41.91 L}* 100 = 62.04 /%\% y = \frac{1.161}{1.872}*100 = 62.02 \%

I hope it helps you!      

You might be interested in
CaC12 * 3H20 is correctly named
ki77a [65]

Answer:

calcium chloride deihydrate

4 0
3 years ago
Which statement best explains the net transfer of energy that is about to
ArbitrLikvidat [17]

Answer:

Explanation:

B I got it right

8 0
3 years ago
Read 2 more answers
How many molecules of nh3 could be made from 10 molecules of n2 and 30 molecules of h2?
lorasvet [3.4K]
You can make 10 because that is the most N2 you have. The first one that runs out limits further molecules to be made
3 0
3 years ago
Ametal used in hot water system?​
svet-max [94.6K]

Answer:

Nichrome

Answer: Hot water system coils are commonly made up of metal alloys which are a combination of two or more elements. The most commonly used metal alloy is “Nichrome”. Nichrome is an alloy of nickel (80%) and chromium (20%).

5 0
3 years ago
Despite not knowing mechanistic details of the adsorption of water onto silica gel, from the information provided, you should be
navik [9.2K]

Answer:

G<0, spontanteous

H<0, from equation

S>0, gas to solid

Explanation:

The small bags of silica gel you often see in a new shoe box are placed there to control humidity. Despite its name, silica gel is a solid. It is a chemically inert, highly porous, amorphous form of SiO2. Water vapor readily adsorbs onto the surface of silica gel, so it acts as a desiccant. Despite not knowing mechanistic details of the adsorption of water onto silica gel, from the information provided, you should be able to make an educated guess about the thermodynamic characteristics of the process. Predict the signs of ΔG, ΔH, and ΔS.

G<0, spontanteous

H<0, from equation

S>0, gas to solid

8 0
3 years ago
Other questions:
  • What is a logical way that you could begin to investigate why your tire had low air pressure? Look to see if there is a hole in
    15·2 answers
  • Antacids are taken to counterbalance excess hydrochloric acid, HCl, in the stomach. Complete and balance the following neutraliz
    9·1 answer
  • Describe the process that ice on Mount Everest goes through when being heated from 10 degrees Fahrenheit to 305 degrees Kelvin.
    10·1 answer
  • Litmus paper is made from water-soluble dyes which are extracted from lichens. This paper is used as an acid-base indicator. Whi
    9·1 answer
  • Consider a series of molecules in which the C atom is bonded to atoms of second-period elements: C-O, C-F, C-N, C-C, and C-B. Pl
    15·1 answer
  • If 8.82 grams of Aluminum reacts, how many grams of AlCl3 will be produced?
    6·1 answer
  • To have a system you need more than one magnet .<br> true or false
    14·2 answers
  • Three chemical reactions of ethane?
    9·1 answer
  • Question 3 of 10
    8·2 answers
  • Which molecules would most likely cause a liquid to have the lowest viscosity?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!