Answer: Option (B) is the correct answer.
Explanation:
As the given reaction is as follows.
Equilibrium constant for this reaction will be as follows.
![K_{c} = \frac{[CO_{2}]}{[CO]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCO_%7B2%7D%5D%7D%7B%5BCO%5D%5E%7B2%7D%7D)
According to Le Chatelier's principle, when we increase the temperature then the equilibrium will shift towards the right hand side.
As a result, concentration of carbon dioxide will decrease whereas concentration of carbon monoxide will increase.
Thus, we can conclude that in the given reaction equilibrium constant for this reaction will decrease with increasing temperature.
Glaciers cause erosion in two main ways: plucking and abrasion. Plucking is caused when sediments are picked up by a glacier. They freeze to the bottom of the glacier and are carried away by the flowing ice. ... The rocks and sediment grind away as the glacier moves
Fusion releases less energy than fission
fusion most commonly combines heavy isotopes of hydrogen into helium.
Explanation:
Nuclear fusion is a form of reaction that involves the combination of two light nuclei to form one that is heavier in mass.
The other form is nuclear fission which is the splitting of heavier nuclei either spontaneously or when bombarded with other nuclei.
- Nuclear fusion reactions in the core of stars powers the universe.
- The reactions produces a huge amount of energy of a greater and massive order than fission reaction.
- Small nuclei are involved in nuclear fusion and not the large ones.
- Nuclear fusion degenerates into series of chain reactions that are extremely difficult to control.
learn more;
Nuclear reactions brainly.com/question/10094982
#learnwithBainly
Answer:
HI.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
Rate of effusion ∝ 1/√molar mass.
- <em>(Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).</em>
- An unknown gas effuses at one half the speed of that of oxygen.
∵ Rate of effusion of unknown gas = 1/2 (Rate of effusion of O₂)
∴ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = 2.
Molar mass of O₂ = 32.0 g/mol.
∵ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).
∴ 2.0 = (√molar mass of unknown gas) / √32.0.
(
√molar mass of unknown gas) = 2.0 x √32.0
By squaring the both sides:
∴ molar mass of unknown gas = (2.0 x √32.0)² = 128 g/mol.
∴ The molar mass of sulfur dioxide = 80.91 g/mol and the molar mass of HI = 127.911 g/mol.
<em>So, the unknown gas is HI.</em>
<em></em>
<span>
</span><span> A radioactive process in which a particle which has two neutrons and two protons is forced to throw from the nucleus of a radioactive atom is called alpha decay .so helium atom is lost in alpha decay</span>
<span>213 Bi gives 4/2 He + 209 Tl </span>