Answer:
= 331.81 g
Explanation:
Molarity is calculated by the formula;
Molarity = Moles/volume in liters
Therefore;
Moles = Molarity ×Volume in liters
= 0.35 M × 1.575 L
= 0.55125 Moles
But; Molar mass of Ba3(PO4)2 is 601.93 g/mol
Thus;
Mass = 0.55125 moles × 601.93 g/mol
<u>= 331.81 g</u>
Answer:
The constant density decreases
Explanation:
As the temperature of a solvent increases, the solubility of any gas dissolved in that solvent decreases.
For example:
when the temperature of a river, lake or stream is raised high , due to discharge of hot water from some industrial process the solubility of the oxygen in the water is decreased .The fish and the other organisms that live in the water bodies such as rivers, ponds, lakes etc can survive only in the presence of oxygen and decrease in the concentration of the water due to increased temperature can lead to the death of the fish and this may in turn damage the ecosystem.
In the above example, water is considered as the solvent and the oxygen is considered as the solute. When the temperature of the solvent that is water increases, the solubility of the gas that is oxygen in the solvent decreases.
Therefore the answer is decreases
Answer:
526g is the mass of this sample
Explanation:
To solve this question we must, as first, find the <em>molar mass </em>of Al₂(Cr₂O₇)₃ using the periodic table. The molar mass is defined as the mass of this compound per mole. With this value we can find the mass in 0.750 moles as follows:
<em>Molar mass Al₂(Cr₂O₇)₃</em>
2Al = 2*26.98g/mol = 53.96g/mol
6 Cr = 6*51.9961g/mol = 311.9766g/mol
21 O = 21*15.999g/mol = 335.979g/mol
53.96g/mol + 311.9766g/mol + 335.979g/mol
= 701.9156g/mol
The mass of 0.750 moles is:
0.750 moles * (701.9156g / mol) =
<h3>526g is the mass of this sample</h3>
Condensation Theory. thought I've heard it be called the condensation-nebula theory.
Explanation:
The given data is as follows.
Concentration of solution = 0.5 M
Volume of solution = 1 L
Molar mass of Glycylglycine = 132.119 g/mol
As molarity is the number of moles present in liter of solvent.
Mathematically, Molarity = 
Hence, calculate the number of moles as follows.
No. of moles = Molarity × Volume
= 
= 0.5 mol
Therefore, mass of glycylglycine = mol × molar mass
= 
= 66.06 g
Thus, we can conclude that 66.06 g glycylglycine is required.