<u>Answer:</u> The chemical formula is 
<u>Explanation:</u>
Ionization energy is defined as the amount of energy that is required to remove an electron from a chemical species.
The ionization energy equation for the given values follow:



From the values of ionization energy above, it can be seen that the ionization energy increases as every succeeding electron is removed.
Second ionization energy is a little higher than the first one but there is a huge amount of difference between the third and second ionization energy.
This implies that the ion formed during second ionization energy has a stable configuration and it requires a humongous amount of heat to release the third electron.
Hence, the ion formed will be 
Sulfite ion is a polyatomic ion having a chemical formula of 
An ionic compound is formed between the two ions and the chemical compound formed between the two will have a formula of 
Hence, the chemical formula is 
3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
Ah , a cup of hot chocolate is alot of chocolate. Im gonna drool ; )
Well , heat flows from an area of high temperature to an area of low temperature. Here , hot chocolate has the high temp , and the surrounding has a room temp. So , the heat from the hot chocolate will dissipate into the surroundings and create a thermal equilibrium. So youre right.
Answer:
yo try and search it on Google
The downward slope represents the relation between durability of titanium and temperature because with increase temperature, strength of titanium decreases.
<h3>Can titanium withstand temperatures?</h3>
Titanium alloys have high tensile strength to weight ratio, good toughness and an ability to bear extreme temperatures of more than 600 °Celsius. This shows that if temperature increase from more than 600 °Celsius, the strength of the titanium tends to decrease because it can not withstand to it so the graph comes to downward when the temperature exceeds to 600°C.
So we can conclude that the downward slope represents the relation between durability of titanium and temperature because with increase temperature, strength of titanium decreases.
Learn more about temperature here: brainly.com/question/4735135
#SPJ1