Boyle’s Law illustrates the inverse relationship of volume and pressure. It follows the formula p1V1 = P2V2 , where P1V1 denotes initial pressure and volume and P2V2 denotes values of pressure and volume.
Now, let us work out for what is asked above.
a. if the pressure is doubled
50.0 p = V x 2p
V = 50.0 p / 2p
= 50.0 /2
= 25.0 m^3
b. if the pressure is cut in half
50.0 p = V x p/2
100 p = V x p
V = 100 m^3
c. if the pressure is tripled
50.0 p = V x 3p
V = 50.0 p / 3p
= 50.0 /3
=16.7 m^3
<span> </span>
Short answer: nitrogen, oxygen, Argon, and
inert gas
The atmosphere contains many gases, most in small amounts, including some pollutants and greenhouse gases.
These contribute to climate change.
The answer is 100 Pa.
The formula for calculating pressure is :
<u>Pressure = Force ÷ Area</u>
<u />
We are given that :
We also know that :
<u>Force = mass ×g</u>
<u />
So, force will be :
Now, we can finally calculate pressure :
Answer:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Explanation:
Potassium and chlorine gas combine to form potassium chloride which is an ionic compound. The reaction is a type of combination reaction in which chlorine is being added to the metal, potassium.
Potassium reacts violently with the chlorine which is yellowish green in color to produce white solid of potassium chloride.
The balanced reaction is shown below as:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Answer: D. 19.9 g hydrogen remains.
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
1 mole of
require 1 mole of
Thus 0.0787 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product and
acts as the excess reagent. (10.0-0.0787)= 9.92 moles of
are left unreacted.
Mass of
Thus 19.9 g of
remains unreacted.