Reaction arrows are used to describe the state or progress of a reaction. 2.1 The Chemical Reaction Arrow. The chemical reaction arrow is one straight arrow pointing from reactant(s) to product(s) and by-products, sometimes along with side products. A → B. It is the most widely used arrow.
Boron is a chemical element with the symbol B and atomic number 5. Produced entirely by cosmic ray spallation and supernovae and not by stellar nucleosynthesis, it is a low-abundance element in the Solar System and in the Earth's crust
The C5 (C5) fraction is a co-product of naphtha cracking and is used as a raw material for synthetic rubber and petroleum resins.
Deuterium
Deuterium is frequently represented by the chemical symbol D. Since it is an isotope of hydrogen with mass number 2, it is also represented by 2. H. .
Unimolecular Elimination (E1) is a reaction in which the removal of an HX substituent results in the formation of a double bond. It is similar to a unimolecular nucleophilic substitution reaction (SN1) in various ways. One being the formation of a carbocation intermediate.
Aqueous (aq.): In the presence of water, often meaning water is the solvent. Aqueous NaCl. Anhydrous NaCl.
Hydrogen is the chemical element with the symbol H and atomic number 1. ... Since hydrogen readily forms covalent compounds with most nonmetallic elements, most of the hydrogen on Earth exists in molecular forms such as water or organic compounds.
Catalyst, in chemistry, any substance that increases the rate of a reaction without itself being consumed. Enzymes are naturally occurring catalysts responsible for many essential biochemical reactions.
Kp is the equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
Hope this helps a bit?
The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g