Areas with poor drainage system
Answer:
<u><em></em></u>
- <u><em>1,500 kg.m/s</em></u>
Explanation:
First, arrange the information in a table:
Object Mass (kg) Velocity (m/s)
A 200 15
B 150 - 10
After the collision, the two objects are stick together, thus you talk aobut one object and one momentum.
According to the law of convervation of momentum, the momentum after the collision is equal to the momentum before the collision.
<u>Momentum before the collision, P₁</u>:


<u>Momentum after the collision</u>:
- As stated, it es equal to the momentum before the collision: 1,500 kg . m/s
Hello!
When hydrogen runs out in a star, it can no longer perform nuclear fusion where hydrogen nuclei combine to create helium. This will stop fusion.
Hope this helps!
I think it's C. if we're talking about a rover.
But if it's a rocket that's computerized and automatic (synonym of unmanned)... Then it's B.
Answer:
Force = 186 N
Explanation:
Torque is the rotational equivalent of linear force. It can be easely calculated using the formula :

Where
is a vector that from the origin of the coordinate system to the point at which the force is applied (the position vector),
is the applied force.
The easiest way of computing the force is by setting the origin of the coordinate system to the lowest point of the torque wrench. By doing this we have that
(the magnitud of the position vector) is 35cm.
Before computing the force we need to set all our values to the international system of units (SI). The torque is already in SI. The one missing is the length of the torque wrench (it is in centimeters and we need it in meters). So :
Now using the torque formula:


Where
is the smaller angle between the force and the position vector. Because the force is applied perpendiculary to the position vector
, thus :





so the force is approximately 186 N.