Light year is the unit of distance. It is the distance that an object travels in one year with the speed of light.
In short, Your Answer would be "Distance"
Hope this helps!
Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
Answer: according to the Avagadro's law, volume is directly propotional to no of moles: VXn
according to the Charles law, volume is directly propotional to temperatue: VXT
according to the Boyle's law, volume is inversely propotional to P: VX1/P
when we combine them we get:
VXnT1/P
V=knT/P
k= R(universal gas constant)
V=RnT/P
PV=nRT
Answer:
The asteroid's acceleration at this point is
Explanation:
The equation that governs the trajectory of asteroid is given by :

The velocity of asteroid is given by :

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0
So,
Acceleration,
Put t = 0.971 s

So, the asteroid's acceleration at this point is
and it is decelerating.
Velocity of the mass after 11 seconds = ( value of the gravitational acceleration) * ( time )
velocity = ( 9.81 m / s^2 ) ( 11)
velocity = 107.91 meters per second