Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.
Answer:

Explanation:
As we know that resistance of one copper wire is given as

here we know that

now we have


now we know that such 17 resistors are connected in parallel so we have


Now if a single copper wire has same resistance then its diameter is D and it is given as

now from above two equations we have


now we have

Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Answer:
the angle of reflection equals the angle of incidence—θr = θi. The angles are measured relative to the perpendicular to the surface at the point where the ray strikes the surface.
Explanation:
A microscope uses a mirror to reflect light to the specimen under the microscope. ... An astronomical reflecting telescope uses a large parabolic mirror to gather dim light from distant stars. A plane mirror is used to reflect the image to the eyepiece.
Answer:
Explanation:
Generally, length of vector means the magnitude of the vector.
So, given a vector
R = a•i + b•j + c•k
Then, it magnitude can be caused using
|R|= √(a²+b²+c²)
So, applying this to each of the vector given.
(a) 2i + 4j + 3k
The length is
L = √(2²+4²+3²)
L = √(4+16+9)
L = √29
L = 5.385 unit
(b) 5i − 2j + k
Note that k means 1k
The length is
L = √(5²+(-2)²+1²)
Note that, -×- = +
L = √(25+4+1)
L = √30
L = 5.477 unit
(c) 2i − k
Note that, since there is no component j implies that j component is 0
L = 2i + 0j - 1k
The length is
L = √(2²+0²+(-1)²)
L = √(4+0+1)
L = √5
L = 2.236 unit
(d) 5i
Same as above no is j-component and k-component
L = 5i + 0j + 0k
The length is
L = √(5²+0²+0²)
L = √(25+0+0)
L = √25
L = 5 unit
(e) 3i − 2j − k
The length is
L = √(3²+(-2)²+(-1)²)
L = √(9+4+1)
L = √14
L = 3.742 unit
(f) i + j + k
The length is
L = √(1²+1²+1²)
L = √(1+1+1)
L = √3
L = 1.7321 unit